Как найти период колебаний формула. Математический маятник: период, ускорение и формулы
Характеристика колебаний
Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.
Циклическая частота
характеризует скорость изменения фазы колебаний.
Начальное состояние колебательной системы характеризует начальная фаза
Амплитуда колебаний A - это наибольшее смещение из положения равновесия
Период T
- это промежуток времени, в течение которого точка выполняет одно полное колебание.
Частота колебаний
- это число полных колебаний в единицу времени t.
Частота, циклическая частота и период колебаний соотносятся как
Виды колебаний
Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными. Встречаются также автоколебания (вынуждаются автоматически).
Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические, затухающие, нарастающие (а также пилообразные, прямоугольные, сложные).
При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.
Вынужденные колебания. Резонанс
Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.
Вынужденные колебания
Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом.
Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.
Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать
Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.
В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.
Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.
Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.
В котором он находился в первоначальный момент, выбранный произвольно).
В принципе совпадает с математическим понятием периода функции , но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.
Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).
В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.
Обозначения:
обычное стандартное обозначение периода колебаний: (хотя могут применяться и другие, наиболее часто это , иногда и т. д.).
Для волновых процессов период связан кроме того очевидным образом с длиной волны
где - скорость распространения волны (точнее - фазовая скорость).
В квантовой физике
период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).
Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).
Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры , осциллографы . Также применяются биения , метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).
Периоды колебаний в природе
Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).
Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .
Периоды колебаний слышимого человеком звука находятся в диапазоне
От 5·10 −5 до 0,2
(четкие границы его несколько условны).
Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне
От 1,1·10 −15 до 2,3·10 −15 .
Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().
В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.
Периоды колебаний простейших физических систем
Пружинный маятник
Математический маятник
где - длина подвеса (к примеру, нити), - ускорение свободного падения .
Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.
Физический маятник
Крутильный маятник
Эту формулу вывел в 1853 году английский физик У. Томсон .
Напишите отзыв о статье "Период колебаний"
Примечания
Ссылки
- - статья из Большой советской энциклопедии
Отрывок, характеризующий Период колебаний
Ростов молчал.– А вы что ж? тоже позавтракать? Порядочно кормят, – продолжал Телянин. – Давайте же.
Он протянул руку и взялся за кошелек. Ростов выпустил его. Телянин взял кошелек и стал опускать его в карман рейтуз, и брови его небрежно поднялись, а рот слегка раскрылся, как будто он говорил: «да, да, кладу в карман свой кошелек, и это очень просто, и никому до этого дела нет».
– Ну, что, юноша? – сказал он, вздохнув и из под приподнятых бровей взглянув в глаза Ростова. Какой то свет глаз с быстротою электрической искры перебежал из глаз Телянина в глаза Ростова и обратно, обратно и обратно, всё в одно мгновение.
– Подите сюда, – проговорил Ростов, хватая Телянина за руку. Он почти притащил его к окну. – Это деньги Денисова, вы их взяли… – прошептал он ему над ухом.
– Что?… Что?… Как вы смеете? Что?… – проговорил Телянин.
Но эти слова звучали жалобным, отчаянным криком и мольбой о прощении. Как только Ростов услыхал этот звук голоса, с души его свалился огромный камень сомнения. Он почувствовал радость и в то же мгновение ему стало жалко несчастного, стоявшего перед ним человека; но надо было до конца довести начатое дело.
– Здесь люди Бог знает что могут подумать, – бормотал Телянин, схватывая фуражку и направляясь в небольшую пустую комнату, – надо объясниться…
– Я это знаю, и я это докажу, – сказал Ростов.
– Я…
Испуганное, бледное лицо Телянина начало дрожать всеми мускулами; глаза всё так же бегали, но где то внизу, не поднимаясь до лица Ростова, и послышались всхлипыванья.
– Граф!… не губите молодого человека… вот эти несчастные деньги, возьмите их… – Он бросил их на стол. – У меня отец старик, мать!…
Ростов взял деньги, избегая взгляда Телянина, и, не говоря ни слова, пошел из комнаты. Но у двери он остановился и вернулся назад. – Боже мой, – сказал он со слезами на глазах, – как вы могли это сделать?
– Граф, – сказал Телянин, приближаясь к юнкеру.
– Не трогайте меня, – проговорил Ростов, отстраняясь. – Ежели вам нужда, возьмите эти деньги. – Он швырнул ему кошелек и выбежал из трактира.
Вечером того же дня на квартире Денисова шел оживленный разговор офицеров эскадрона.
– А я говорю вам, Ростов, что вам надо извиниться перед полковым командиром, – говорил, обращаясь к пунцово красному, взволнованному Ростову, высокий штаб ротмистр, с седеющими волосами, огромными усами и крупными чертами морщинистого лица.
Штаб ротмистр Кирстен был два раза разжалован в солдаты зa дела чести и два раза выслуживался.
– Я никому не позволю себе говорить, что я лгу! – вскрикнул Ростов. – Он сказал мне, что я лгу, а я сказал ему, что он лжет. Так с тем и останется. На дежурство может меня назначать хоть каждый день и под арест сажать, а извиняться меня никто не заставит, потому что ежели он, как полковой командир, считает недостойным себя дать мне удовлетворение, так…
– Да вы постойте, батюшка; вы послушайте меня, – перебил штаб ротмистр своим басистым голосом, спокойно разглаживая свои длинные усы. – Вы при других офицерах говорите полковому командиру, что офицер украл…
– Я не виноват, что разговор зашел при других офицерах. Может быть, не надо было говорить при них, да я не дипломат. Я затем в гусары и пошел, думал, что здесь не нужно тонкостей, а он мне говорит, что я лгу… так пусть даст мне удовлетворение…
– Это всё хорошо, никто не думает, что вы трус, да не в том дело. Спросите у Денисова, похоже это на что нибудь, чтобы юнкер требовал удовлетворения у полкового командира?
Денисов, закусив ус, с мрачным видом слушал разговор, видимо не желая вступаться в него. На вопрос штаб ротмистра он отрицательно покачал головой.
– Вы при офицерах говорите полковому командиру про эту пакость, – продолжал штаб ротмистр. – Богданыч (Богданычем называли полкового командира) вас осадил.
– Не осадил, а сказал, что я неправду говорю.
– Ну да, и вы наговорили ему глупостей, и надо извиниться.
– Ни за что! – крикнул Ростов.
– Не думал я этого от вас, – серьезно и строго сказал штаб ротмистр. – Вы не хотите извиниться, а вы, батюшка, не только перед ним, а перед всем полком, перед всеми нами, вы кругом виноваты. А вот как: кабы вы подумали да посоветовались, как обойтись с этим делом, а то вы прямо, да при офицерах, и бухнули. Что теперь делать полковому командиру? Надо отдать под суд офицера и замарать весь полк? Из за одного негодяя весь полк осрамить? Так, что ли, по вашему? А по нашему, не так. И Богданыч молодец, он вам сказал, что вы неправду говорите. Неприятно, да что делать, батюшка, сами наскочили. А теперь, как дело хотят замять, так вы из за фанаберии какой то не хотите извиниться, а хотите всё рассказать. Вам обидно, что вы подежурите, да что вам извиниться перед старым и честным офицером! Какой бы там ни был Богданыч, а всё честный и храбрый, старый полковник, так вам обидно; а замарать полк вам ничего? – Голос штаб ротмистра начинал дрожать. – Вы, батюшка, в полку без году неделя; нынче здесь, завтра перешли куда в адъютантики; вам наплевать, что говорить будут: «между павлоградскими офицерами воры!» А нам не всё равно. Так, что ли, Денисов? Не всё равно?
Денисов всё молчал и не шевелился, изредка взглядывая своими блестящими, черными глазами на Ростова.
– Вам своя фанаберия дорога, извиниться не хочется, – продолжал штаб ротмистр, – а нам, старикам, как мы выросли, да и умереть, Бог даст, приведется в полку, так нам честь полка дорога, и Богданыч это знает. Ох, как дорога, батюшка! А это нехорошо, нехорошо! Там обижайтесь или нет, а я всегда правду матку скажу. Нехорошо!
И штаб ротмистр встал и отвернулся от Ростова.
– Пг"авда, чог"т возьми! – закричал, вскакивая, Денисов. – Ну, Г"остов! Ну!
Ростов, краснея и бледнея, смотрел то на одного, то на другого офицера.
– Нет, господа, нет… вы не думайте… я очень понимаю, вы напрасно обо мне думаете так… я… для меня… я за честь полка.да что? это на деле я покажу, и для меня честь знамени…ну, всё равно, правда, я виноват!.. – Слезы стояли у него в глазах. – Я виноват, кругом виноват!… Ну, что вам еще?…
– Вот это так, граф, – поворачиваясь, крикнул штаб ротмистр, ударяя его большою рукою по плечу.
– Я тебе говог"ю, – закричал Денисов, – он малый славный.
– Так то лучше, граф, – повторил штаб ротмистр, как будто за его признание начиная величать его титулом. – Подите и извинитесь, ваше сиятельство, да с.
– Господа, всё сделаю, никто от меня слова не услышит, – умоляющим голосом проговорил Ростов, – но извиняться не могу, ей Богу, не могу, как хотите! Как я буду извиняться, точно маленький, прощенья просить?
Денисов засмеялся.
– Вам же хуже. Богданыч злопамятен, поплатитесь за упрямство, – сказал Кирстен.
– Ей Богу, не упрямство! Я не могу вам описать, какое чувство, не могу…
– Ну, ваша воля, – сказал штаб ротмистр. – Что ж, мерзавец то этот куда делся? – спросил он у Денисова.
– Сказался больным, завтг"а велено пг"иказом исключить, – проговорил Денисов.
– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.
Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.
Но имея ввиду под функцией зависимость физической величины, совершающей колебания, от времени.
Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).
В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием, под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.
Обозначения:
обычное стандартное обозначение периода колебаний: (хотя могут применяться и другие, наиболее часто это , иногда и т. д.).
Период колебаний связан соотношением взаимной обратности с частотой :
Для волновых процессов период связан кроме того очевидным образом с длиной волны
где - скорость распространения волны (точнее - фазовая скорость).
В квантовой физике
период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).
Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).
Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры, осциллографы. Также применяются биения, метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).
Периоды колебаний в природе
Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).
Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .
Периоды колебаний слышимого человеком звука находятся в диапазоне
От 5·10 -5 до 0,2
(четкие границы его несколько условны).
Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне
От 1,1·10 -15 до 2,3·10 -15 .
Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекая в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().
В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже на много порядков меньших. а границей сверху - время существования Вселенной - более десяти миллиардов лет.
Периоды колебаний простейших физических систем
Пружинный маятник
Математический маятник
где - длина подвеса (к примеру нити), - ускорение свободного падения .
Период колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.
Физический маятник
где - момент инерции маятника относительно оси вращения, - масса маятника, - расстояние от оси вращения до центра масс .
Крутильный маятник
где - момент инерции тела, а - вращательный коэффициент жёсткости маятника.
Электрический колебательный (LC) контур
Период колебаний электрического колебательного контура:
где - индуктивность катушки, - ёмкость конденсатора .
Эту формулу вывел в 1853 году английский физик У. Томсон.
Примечания
Ссылки
- Период колебаний - статья из Большой советской энциклопедии
Wikimedia Foundation . 2010 .
Смотреть что такое "Период колебаний" в других словарях:
период колебаний
- период Наименьший промежуток времени, через который повторяется состояние механической системы, характеризуемое значениями обобщенных координат и их производных. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук… … Справочник технического переводчика
Период (колебаний)
- ПЕРИОД колебаний, наименьший промежуток времени, через который совершающая колебания система возвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Период величина, обратная частоте колебаний. Понятие… … Иллюстрированный энциклопедический словарь
Наименьший промежуток времени, через к рый.система, совершающая колебания, снова возвращается в то же состояние, в к ром она находилась в нач. момент, выбранный произвольно. Строго говоря, понятие «П. к.» применимо лишь, когда значения к. л.… … Физическая энциклопедия
Наименьший промежуток времени, через который колеблющаяся система возвращается к исходному состоянию. Период колебаний величина, обратная частоте колебаний … Большой Энциклопедический словарь
период колебаний
- период колебаний; период Наименьший промежуток времени, через который повторяется состояние механической системы, характеризуемое значениями обобщенных координат и их производных … Политехнический терминологический толковый словарь
Период колебаний
- 16. Период колебаний Наименьший интервал времени, через который при периодических колебаниях повторяется каждое значение колеблющейся величины Источник … Словарь-справочник терминов нормативно-технической документации
Наименьший промежуток времени, через который колеблющаяся система возвращается к исходному состоянию. Период колебаний величина, обратная частоте колебаний. * * * ПЕРИОД КОЛЕБАНИЙ ПЕРИОД КОЛЕБАНИЙ, наименьший промежуток времени, через который… … Энциклопедический словарь
период колебаний
- virpesių periodas statusas T sritis automatika atitikmenys: angl. oscillation period; period of oscillations; period of vibrations vok. Schwingungsdauer, m; Schwingungsperiode, f; Schwingungszeit, f rus. период колебаний, m pranc. période d… … Automatikos terminų žodynas
период колебаний
- virpesių periodas statusas T sritis Standartizacija ir metrologija apibrėžtis Mažiausias laiko tarpas, po kurio pasikartoja periodiškai kintančių dydžių vertės. atitikmenys: angl. vibration period vok. Schwingungsdauer, f; Schwingungsperiode, f… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
1.Вспомним, что называется частотой и периодом колебаний.
Время, за которое маятник совершает одно полное колебание, называют периодом колебаний.
Период обозначают буквойT и измеряют в секундах (с).
Число полных колебаний за одну секунду, называют частотой колебаний. Частоту обозначают буквой n.
1 Гц = .
Единица частоты колебаний в Ш - герц (1 Гц).
1 Гц - это частота таких колебаний, при которых за 1 с совершается одно полное колебание.
Частота колебаний и период связаны соотношением:
n = .
2.Период колебаний рассмотренных нами колебательных систем - математического и пружинного маятников - зависит от характеристик этих систем.
Выясним, от чего зависит период колебаний математического маятника. Для этого проделаем опыт. Будем менять длину нити математического маятника и измерять время нескольких полных колебаний, например 10. В каждом случае определим период колебаний маятника, разделив измеренное время на 10. Опыт показывает, что чем больше длина нити, тем больше период колебаний.
Теперь поместим под маятником магнит, увеличивая тем самым силу тяжести, действующую на маятник, и измерим период его колебаний. Заметим, что период колебаний уменьшится. Следовательно, период колебаний математического маятника зависит от ускорения свободного падения: чем оно больше, тем меньше период колебаний.
Формула периода колебаний математического маятника имеет вид:
T= 2p, |
где l - длина нити маятника, g - ускорение свободного падения.
3.Определим экспериментально, от чего зависит период колебаний пружинного маятника.
Будем подвешивать к одной и той же пружине грузы разной массы и измерять период колебаний. Заметим, что чем больше масса груза, тем больше период колебаний.
Затем будем к пружинам разной жесткости подвешивать один и тот же груз. Опыт показывает, что чем больше жесткость пружины, тем меньше период колебаний маятника.
Формула периода колебаний пружинного маятника имеет вид:
T= 2p, |
где m - масса груза, k - жесткость пружины.
4.В формулы периода колебаний маятников входят величины, характеризующие сами маятники. Эти величины называют параметрами колебательных систем.
Если в процессе колебаний параметры колебательной системы не меняются, то период (частота) колебаний остается неизменным. Однако в реальных колебательных системах действуют силы трения, поэтому период реальных свободных колебаний с течением времени уменьшается.
Если же предположить, что трение отсутствует и система совершает свободные колебания, то период колебаний меняться не будет.
Свободные колебания, которые могла бы совершать система в отсутствие трения, называют собственными колебаниями.
Частота таких колебаний называется собственной частотой. Она зависит от параметров колебательной системы.
Вопросы для самопроверки
1.Что называют периодом колебаний маятника?
2.Что называют частотой колебаний маятника? Какова единица частоты колебаний?
3.От каких величин и как зависит период колебаний математического маятника?
4.От каких величин и как зависит период колебаний пружинного маятника?
5.Какие колебания называют собственными?
Задание 23
1.Каков период колебаний маятника, если 20 полных колебаний он совершает за 15 с?
2.Чему равна частота колебаний, если период колебаний равен0,25 с?
3.Какой должна быть длина маятника в маятниковых часах, чтобы период его колебаний был равен 1 с? Считать g = 10 м/с 2 ; p 2 = 10.
4.Чему равен период колебаний маятника, длина нити которого равна 28 см, на Луне? Ускорение свободного падения на Луне 1,75 м/с 2 .
5.Определите период и частоту колебаний пружинного маятника, если жесткость его пружины равна 100 Н/м, а масса груза 1 кг.
6.Во сколько раз изменится частота колебаний автомобиля на рессорах, если в него положить груз, масса которого равна массе ненагруженного автомобиля?
Лабораторная работа № 2
Изучение колебаний
математического и пружинного маятников
Цель работы:
исследовать, от каких величин зависит, а от каких не зависит период колебаний математического и пружинного маятников.
Приборы и материалы:
штатив, 3 груза разной массы (шарик, груз массой 100 г, гирька), нить длиной 60 см, 2 пружины разной жесткости, линейка, секундомер, полосовой магнит.
Порядок выполнения работы
1. Изготовьте математический маятник. Наблюдайте его колебания.
2. Исследуйте зависимость периода колебаний математического маятника от длины нити. Для этого определите время 20 полных колебаний маятников длиной 25 и 49 см. Вычислите период колебаний в каждом случае. Результаты измерений и вычисленийс учетом погрешности измерений занесите в таблицу 10. Сделайте вывод.
Таблица 10
l, м |
n |
tд Dt, с |
Tд DT,с |
0,25 |
20 |
||
0,49 |
20 |
3. Исследуйте зависимость периода колебаний маятника от ускорения свободного падения. Для этого под маятником длиной 25 см поместите полосовой магнит. Определите период колебаний, сравните его с периодом колебаний маятника в отсутствие магнита. Сделайте вывод.
4. Покажите, что период колебаний математического маятника не зависит от массы груза. Для этого к нити неизменной длины подвешивайте грузы разной массы. Для каждого случая определите период колебаний, сохраняя одинаковой амплитуду. Сделайте вывод.
5. Покажите, что период колебаний математического маятника не зависит от амплитуды колебаний. Для этого маятник отклоните сначала на 3 см, а затем на 4 см от положения равновесия и определите период колебаний в каждом случае. Результаты измерений и вычислений занесите в таблицу 11. Сделайте вывод.
Таблица 11
A, см |
n |
t + Dt, с |
T + DT, с |
6. Покажите, что период колебаний пружинного маятника зависит от массы груза. Прикрепляя к пружине грузы разной массы, определите период колебаний маятника в каждом случае, измерив время 10 колебаний. Сделайте вывод.
7. Покажите, что период колебаний пружинного маятника зависит от жесткости пружины. Сделайте вывод.
8. Покажите, что период колебаний пружинного маятника не зависит от амплитуды. Результаты измерений и вычислений занесите в таблицу 12. Сделайте вывод.
Таблица 12
A, см |
n |
t + Dt, с |
T + DT, с |
Задание 24
1 э.Исследуйте область применимости модели математического маятника. Для этого изменяйте длину нити маятника и размеры тела. Проверьте, зависит ли период колебаний от длины маятника, если тело имеет большие размеры, а длина нити мала.
2.Вычислите длины секундных маятников, установленных на полюсе (g = 9,832 м/с 2), на экваторе (g = 9,78 м/с 2), в Москве (g= 9,816 м/с 2), в Санкт‑Петербурге (g = 9,819 м/ с 2).
3 * .
Как влияют изменения температуры на ход маятниковых часов?
4.Как изменится частота маятниковых часов при подъеме в гору?
5 * .
Девочка качается на качелях. Изменится ли период колебаний качелей, если на них сядут две девочки? Если девочка будет качаться не сидя, а стоя?
Лабораторная работа № 3*
Измерение ускорения свободного падения
с помощью математического маятника
Цель работы:
научиться измерять ускорение свободного падения, используя формулу периода колебаний математического маятника.
Приборы и материалы:
штатив, шарик с прикрепленной к нему нитью, измерительная лента, секундомер (или часы с секундной стрелкой).
Порядок выполнения работы
1. Подвесьте к штативу шарик на нити длиной 30 см.
2. Измерьте время 10 полных колебаний маятника и вычислите его период колебаний. Результаты измерений и вычисления занесите в таблицу 13.
3. Пользуясь формулой периода колебаний математического маятника T = 2p, вычислите ускорение свободного падения по формуле: g = .
4. Повторите измерения, изменив длину нити маятника.
5. Вычислите относительную и абсолютную погрешность изменения ускорения свободного падения для каждого случая по формулам:
dg ==+ ; Dg = g dg.
Считайте, что погрешность измерения длины равна половине цены деления измерительной ленты, а погрешность измерения времени - цене деления секундомера.
6. Запишите значение ускорения свободного падения в таблицу 13 с учетом погрешности измерений.
Таблица 13
№ опыта |
l д Dl, м |
n |
t д Dt, с |
T д DT, с |
g, м/с2 |
Dg, м/с2 |
g д Dg, м/с2 |
Задание 25
1.Изменится ли, и если да, то как, погрешность измерения периода колебаний маятника, если увеличить число колебаний с 20 до 30?
2.Как влияет на точность измерения ускорения свободного падения увеличение длины маятника? Почему?
Время, в течение которого совершается одно полное изменение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания переменного тока (рисунок 1).
Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.
Период выражают в секундах и обозначают буквой Т.
Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.
1 мс =0,001сек =10 -3 сек.
1 мкс=0,001 мс = 0,000001сек =10 -6 сек.
1000 мкс = 1 мс.
Число полных изменений ЭДС или число оборотов радиуса-вектора, то есть иначе говоря, число полных циклов колебаний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.
Частота обозначается буквой f и выражается в периодах в секунду или в герцах.
Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.
1000 Гц = 10 3 Гц = 1 кГц;
1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;
Чем быстрее происходит изменение ЭДС, то есть чем быстрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.
Математическая связь между периодом и частотой переменного тока и напряжения выражается формулами
Например, если частота тока равна 50 Гц, то период будет равен:
Т = 1/f = 1/50 = 0,02 сек.
И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:
f = 1/T=1/0,02 = 100/2 = 50 Гц
Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.
Частоты от 20 до 20 000 Гц называются звуковыми частотами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие высокие частоты называются радиочастотами или колебаниями высокой частоты.
Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.
Амплитуда переменного тока
Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно буквами Im, Em и Um (рисунок 1).
Угловая (циклическая) частота переменного тока.
Скорость вращения радиуса-вектора, т. е. изменение величины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (омега). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.
Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.
Рисунок 2.
1рад = 360°/2
Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в течение одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его конец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .
? = 6,28*f = 2f
Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза показывает, убывает ли ЭДС или возрастает.
Рисунок 3.
Полный оборот радиуса-вектора равен 360°. С началом нового оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следовательно, все фазы ЭДС будут повторяться в прежнем порядке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обоих этих случаях радиус-вектор занимает одинаковое положение, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.