Как представить число в алгебраической форме. Алгебраическая форма записи комплексного числа
Копилка полезных уроков

Как представить число в алгебраической форме. Алгебраическая форма записи комплексного числа

Алгебраическая форма записи комплексного числа................................................................

Плоскость комплексных чисел....................................................................................................

Комплексно сопряжённые числа.................................................................................................

Действия с комплексными числами в алгебраической форме...............................................

Сложение комплексных чисел.................................................................................................

Вычитание комплексных чисел...............................................................................................

Умножение комплексных чисел..............................................................................................

Деление комплексных чисел....................................................................................................

Тригонометрическая форма записи комплексного числа.......................................................

Действия с комплексными числами в тригонометрической форме......................................

Умножение комплексных чисел в тригонометрической форме.........................................

Деление комплексных чисел в тригонометрической форме...............................................

Возведение комплексного числа в целую положительную степень..................................

Извлечение корня целой положительной степени из комплексного числа.....................

Возведение комплексного числа в рациональную степень.................................................

Комплексные ряды......................................................................................................................

Комплексные числовые ряды.................................................................................................

Степенные ряды в комплексной плоскости.........................................................................

Двусторонние степенные ряды в комплексной плоскости...............................................

Функции комплексного переменного.......................................................................................

Основные элементарные функции........................................................................................

Формулы Эйлера......................................................................................................................

Показательная форма представления комплексного числа..............................................

Связь между тригонометрическими и гиперболическими функциями..........................

Логарифмическая функция.....................................................................................................

Общая показательная и общая степенная функции...........................................................

Дифференцирование функций комплексного переменного.................................................

Условия Коши-Римана............................................................................................................

Формулы для вычисления производной...............................................................................

Свойства операции дифференцирования.............................................................................

Свойства действительной и мнимой частей аналитической функции............................

Восстановление функции комплексного переменного по её действительной или мнимой

Способ №1. С помощью криволинейного интеграла.....................................................

Способ №2. Непосредственное применение условий Коши-Римана..........................

Способ №3. Через производную искомой функции.......................................................

Интегрирование функций комплексного переменного.........................................................

Интегральная формула Коши....................................................................................................

Разложение функций в ряды Тейлора и Лорана.....................................................................

Нули и особые точки функции комплексного переменного................................................

Нули функции комплексного переменного.....................................................................

Изолированные особые точки функции комплексного переменного.........................

14.3 Бесконечно удалённая точка как особая точка функции комплексного переменного

Вычеты...........................................................................................................................................

Вычет в конечной точке......................................................................................................

Вычет функции в бесконечно удаленной точке..............................................................

Вычисление интегралов с помощью вычетов.........................................................................

Вопросы для самопроверки........................................................................................................

Литература....................................................................................................................................

Предметный указатель................................................................................................................

Предисловие

Правильно распределить время и силы при подготовке к теоретической и практической частям экзамена или аттестации по модулю достаточно сложно, тем более что в период сессии времени всегда не хватает. И как показывает практика, справиться с этим получается не у всех. В результате на экзамене одни студенты правильно решают задачи, но затрудняются ответить на простейшие теоретические вопросы, а другие могут сформулировать теорему, но не могут её применить.

Настоящие методические рекомендации для подготовки к экзамену по курсу «Теория функций комплексного переменного» (ТФКП) являются попыткой разрешить это противоречие и обеспечить одновременное повторение теоретического и практического материала курса. Руководствуясь принципом «Теория без практики мертва, практика без теории слепа», они содержат как теоретические положения курса на уровне определений и формулировок, так и примеры, иллюстрирующие применение каждого приведенного теоретического положения, и, тем самым, облегчающие его запоминание и понимание.

Цель предлагаемых методических рекомендаций – помочь студенту подготовиться к экзамену на базовом уровне. Иными словами, составлен расширенный рабочий справочник, содержащий основные моменты, используемые на занятиях по курсу ТФКП, и необходимые при выполнении домашнего задания и подготовке к контрольным мероприятиям. Помимо самостоятельной работы студентов, настоящее электронное учебное издание можно использовать при проведении занятий в интерактивной форме с использованием электронной доски или для размещения в системе дистанционного обучения.

Обращаем внимание, что настоящий труд не заменяет собой ни учебников, ни конспекта лекций. Для углублённого изучения материала рекомендуется обращаться к соответствующим разделам изданного в МГТУ им. Н.Э. Баумана базового учебника .

В конце пособия помещён список рекомендуемой литературы и предметный указатель, в который входят все выделенные в текстеполужирным курсивомтермины. Предметный указатель состоит из гиперссылок на разделы, в которых эти термины строго определены или описаны и где приведены примеры, иллюстрирующие их применение.

Пособие предназначено для студентов 2 курса всех факультетов МГТУ им. Н.Э. Баумана.

1. Алгебраическая форма записи комплексного числа

Запись вида z = x + iy , где x , y - действительные числа, i - мнимая единица (т.е. i 2 = − 1)

называют алгебраической формой записи комплексного числа z. При этом x называют действительной частью комплексного числа и обозначают Re z (x = Re z ), y называют мнимой частью комплексного числа и обозначают Im z (y = Im z ).

Пример. У комплексного числа z = 4 − 3i действительная часть Re z = 4 , а мнимая Im z = − 3 .

2. Плоскость комплексных чисел

В теории функций комплексного переменного рассматриваютплоскость комплексных чисел, которую обозначают либо, либо используют буквы, обозначающие комплексные числа z , w и т.п.

Горизонтальная ось комплексной плоскости называется действительной осью, на ней располагают действительные числа z = x + 0 i = x .

Вертикальная ось комплексной плоскости называется мнимой осью , на ней располагают

3. Комплексно сопряжённые числа

Числа z = x + iy и z = x − iy называют комплексно сопряжёнными. На комплексной плоскости им соответствуют точки, симметричные относительно действительной оси.

4. Действия с комплексными числамив алгебраической форме

4.1 Сложение комплексных чисел

Суммой двух комплексных чисел

z 1 = x 1 + iy 1

и z 2 = x 2 + iy 2 называется комплексное число

z 1 + z 2

= (x 1 + iy 1 ) + (x 2 + iy 2 ) = (x 1 + x 2 ) + i (y 1 + y 2 ) .

операция

сложения

комплексных чисел аналогична операции сложения алгебраических двучленов.

Пример. Суммой двух комплексных чисел z 1 = 3 + 7i и z 2

= −1 +2 i

будет комплексное число

z 1 + z 2 = (3 +7 i ) +(−1 +2 i ) = (3 −1 ) +(7 +2 ) i = 2 +9 i .

Очевидно,

суммой комплексно

сопряжённых

является

действительное

z + z = (x + iy) + (x − iy) = 2 x = 2 Re z .

4.2 Вычитание комплексных чисел

Разностью двух комплексных чисел z 1 = x 1 + iy 1

X 2 +iy 2

называется

комплексное

число z 1 − z 2 = (x 1 + iy 1 ) − (x 2 + iy 2 ) = (x 1 − x 2 ) + i (y 1 − y 2 ) .

Пример. Разностью двух комплексных чисел

z 1 = 3 −4 i

и z 2

= −1 +2 i

будет комплексное

число z 1 − z 2 = (3 − 4i ) − (− 1+ 2i ) = (3 − (− 1) ) + (− 4 − 2) i = 4 − 6i .

Разностью

комплексно сопряжённых

является

z − z = (x + iy) − (x − iy) = 2 iy = 2 i Im z .

4.3 Умножение комплексных чисел

Произведением двух комплексных чисел

z 1 = x 1 + iy 1

и z 2 = x 2 + iy 2

называется комплексное

z 1z 2 = (x 1 + iy 1 )(x 2 + iy 2 ) = x 1x 2 + iy 1x 2 + iy 2 x 1 + i 2 y 1 y 2

= (x 1x 2 − y 1 y 2 ) + i (y 1x 2 + y 2 x ) .

образом, операция умножения комплексных чисел аналогична операции умножения алгебраических двучленов с учётом того, что i 2 = − 1.

Рассмотрим квадратное уравнение .

Определим его корни .

Не существует действительного числа, квадрат которого равен -1. Но если формулой определить оператор i как мнимую единицу, то решение этого уравнения можно записать в виде . При этом и - комплексные числа, в которых -1 это действительная часть, 2 или во втором случае -2 – мнимая часть. Мнимая часть – это также действительное (вещественное) число. Мнимая часть, умноженная на мнимую единицу, означает уже мнимое число.

В общем виде комплексное число имеет вид

z=x+iy ,

где x, y – вещественные числа, – мнимая единица. В ряде прикладных наук, например, в электротехнике, электронике, теории сигналов мнимая единица обозначается через j. Вещественные числа x = Re{z}и y =Im{z}называютсявещественной и мнимой частямичислаz. Выражение называется алгебраической формойзаписи комплексного числа.

Любое действительное число есть частный случай комплексного числа в виде . Мнимое число тоже частный случай комплексного числа .

Определение множества комплексных чисел С

Это выражение читается следующим образом: множество С, состоящее из элементов , таких что x и y принадлежат множеству действительных чисел R и - это мнимая единица. Отметим, что и т.д.

Два комплексных числа и равны, если и только если равны их действительные и мнимые части, т.е. и .

Комплексные числа и функции широко используются в науке и технике, в частности, в механике, анализе и расчете цепей переменного тока, аналоговой электронике, в теории и обработке сигналов, в теории автоматического управления и др. прикладных науках.

  1. Арифметика комплексных чисел

Сложение двух комплексных чисел состоит в сложении их действительных и мнимых частей, т.е.

Соответственно разность двух комплексных чисел

Комплексное число называется комплексно сопряженным числу z =x +iy.

Комплексно сопряженные числа z и z * отличаются знаками мнимой части. Очевидно, что

.

Любое равенство между комплексными выражениями остается справедливым, если в этом равенстве всюду iзаменить на -i, т.е. перейти к равенству сопряженных чисел. Числа i и i алгебраически неразличимы, поскольку .

Произведение (умножение) двух комплексных чисел может быть вычислено следующим образом:

Деление двух комплексных чисел:

Пример:

  1. Комплексная плоскость

Комплексное число графически можно представить в прямоугольной системе координат. Зададим в плоскости прямоугольную систему координат (x, y).

На оси Oxбудем располагать действительные части x , она называется действительной (вещественной) осью, на оси Oy –мнимые части y комплексных чисел. Она носит название мнимой оси. При этом каждому комплексному числу соответствует определенная точка плоскости, и такая плоскость называется комплексной плоскостью. Точке Акомплексной плоскости будет соответствовать вектор ОА.

Число x называется абсциссой комплексного числа , число yординатой.

Пара комплексно сопряженных чисел отображается точками, расположенными симметрично относительно действительной оси.



Если на плоскости задать полярную систему координат, то каждое комплексное число z определяется полярными координатами . При этом модуль числа – это полярный радиус точки, а угол - её полярный угол или аргумент комплексного числа z.

Модуль комплексного числа всегда неотрицательный. Аргумент комплексного числа не определяется однозначно. Главное значение аргумента должно удовлетворять условию . Каждой точке комплексной плоскости соответствует также общее значение аргумента . Аргументы, отличающиеся значением, кратным 2π, считаются равными. Аргумент числа нуль не определен.

Главное значение аргумента определяют по выражениям:

Очевидно, что

При этом
, .

Представление комплексного числа z в виде

называется тригонометрической формой комплексного числа.

Пример.

  1. Показательная форма комплексных чисел

Разложение в ряд Маклорена для функций действительного аргумента имеет вид:

Для экспоненциальной функции комплексного аргумента z разложение имеет аналогичный характер

.

Разложение в ряд Маклорена для экспоненциальной функции мнимого аргумента можно представить как

Получившееся тождество называется формулой Эйлера.

Для отрицательного аргумента оно имеет вид

Комбинируя эти выражения, можно определить следующие выражения для синуса и косинуса

.

Пользуясь формулой Эйлера, из тригонометрической формы представления комплексных чисел

можно получить показательную(экспоненциальную, полярную) форму комплексного числа, т.е. его представление в виде

,

где - полярные координаты точки с прямоугольными координатами (x,y).

Число, сопряженное комплексному числу , в показательной форме записывается следующим образом .

Для показательной формы легко определить следующие формулы умножения и деления комплексных чисел

Т.е., в показательной форме произведение и деление комплексных чисел выполняется проще, чем в алгебраической форме. При умножении модули сомножителей перемножаются, а аргументы складываются. Это правило распространяется на любое число сомножителей. В частности, при умножении комплексного числа z на iвектор z поворачивается против часовой стрелки на 90

При делении модуль числителя делится на модуль знаменателя, и из аргумента числителя вычитается аргумент знаменателя.

Используя показательную форму комплексных чисел, можно получить выражения для известных тригонометрических тождеств. Например, из тождества

с помощью формулы Эйлера можно записать

Приравнивая действительную и мнимую части в данном выражении, получаем выражения для косинуса и синуса суммы углов

  1. Степени, корни и логарифмы комплексных чисел

Возведение комплексного числа в натуральную степень n производится по формуле

Пример. Вычислим .

Представим число в тригонометрической форме

Применяя формулу возведения в степень, получим

Положив в выражении значение r= 1, получим так называемую формулу Муавра , при помощи которой можно определять выражения синусов и косинусов кратных углов.

Корень n–й степени из комплексного числа zимеет n различных значений, определяемых по выражению

Пример. Найдем .

Для этого выразим комплексное число () к тригонометрической форме

.

По формуле вычисления корня из комплексного числа, получаем

Логарифм комплексного числа z– это число w, для которого . Натуральный логарифм комплексного числа имеет бесконечное множество значений и вычисляется по формуле

Состоит из действительной (косинусоидальной) и мнимой (синусоидальной) части. Такое напряжение можно представлять как вектор длиной U m , начальной фазой (углом) , вращающийся с угловой скоростью ω.

При этом если комплексные функции складываются, то складываются их вещественные и мнимые части. Если комплексная функция умножается на константу или вещественную функцию, то её вещественная и мнимая части умножаются на тот же множитель. Дифференцирование / интегрирование такой комплексной функции сводится к дифференцированию / интегрированию вещественной и мнимой части.

Например, дифференцирование выражения комплексного напряжения

заключается в умножении его на iω - вещественная часть функции f(z), а – мнимая часть функции. Примеры: .

Значение z изображается точкой в комплексной плоскости z, а соответствующее значение w - точкой в комплексной плоскости w. При отображении w = f(z) линии плоскости z переходят в линии плоскости w, фигуры одной плоскости в фигуры другой, но формы линий или фигур могут существенно измениться.

Напомним необходимые сведения о комплексных числах.

Комплексное число - это выражение вида a + bi, где a, b - действительные числа, а i - так называемая мнимая единица, символ, квадрат которого равен –1, то есть i 2 = –1. Число a называется действительной частью, а число b - мнимой частью комплексного числа z = a + bi. Если b = 0, то вместо a + 0i пишут просто a. Видно, что действительные числа - это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi) ± (c + di) = (a ± c) + (b ± d)i, а умножение - по правилу (a + bi) · (c + di) = (acbd) + (ad + bc)i (здесь как раз используется, что i 2 = –1). Число = abi называется комплексно-сопряженным к z = a + bi. Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a; b) на декартовой плоскости (или, что почти то же самое, точкой - концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a; b) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z|. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z. Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) - ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ; r · sin φ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z| · (cos(Arg z) + i sin(Arg z)). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z 1 · z 2 = |z 1 | · |z 2 | · (cos(Arg z 1 + Arg z 2) + i sin(Arg z 1 + Arg z 2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра: z n = |z|n · (cos(n · (Arg z)) + i sin(n · (Arg z))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z - это такое комплексное число w, что w n = z. Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n-й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n-угольника).

Комплексные числа - расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма , где и - вещественные числа, - мнимая единица.

Запись комплексного числа в виде , , называется алгебраической формой комплексного числа.

Свойства комплексных чисел. Геометрическая интерпретация комплексного числа.

Действия над комплексными числами, заданными в алгебраической форме:

Рассмотрим правила, по которым производятся арифметические действия над комплекс­ными числами.

Если даны два комплексных числа α = a + bi и β = c + di, то

α + β = (a + bi) + (c + di) = (a + c) + (b + d)i,

α – β = (a + bi) – (c + di) = (a – c) + (b – d)i . (11)

Это следует из определения действий сложения и вычитания двух упорядоченных пар действительных чисел (см. формулы (1) и (3)). Мы получили правила сложения и вычитания комплексных чисел: чтобы сложить два комплексных числа, надо отдельно сложить их действительные части и соответственно мни­мые части; чтобы из одного комплексного числа вычесть другое, необходимо вычесть соответственно их действительные и мнимые части.

Число – α = – a – bi называют противополож­ным числу α = a + bi . Сумма двух этих чисел равна нулю: - α + α = (- a - bi) + (a + bi) = (-a + a) + (-b + b)i = 0.

Для получения правила умножения комплексных чисел воспользуемся формулой (6), т. е. тем, что i2 = -1. Учитывая это соотношение, находим (a + bi)(c + di) = ac + adi + bci + bdi2 = ac + (ad + bc)i – bd, т.е.

(a + bi)(c + di) = (ac - bd) + (ad + bc)i . (12)

Эта формула соответствует формуле (2), которой определялось умножение упорядоченных пар дей­ствительных чисел.

Отметим, что сумма и произведение двух комп­лексно сопряженных чисел являются действительными числами. Всамомделе, еслиα = a + bi, = a – bi, тоα = (a + bi)(a - bi) = a2 – i2b2 = a2 + b2 , α + = (a + bi) + (a - bi) = (a + a) + (b - b)i= 2a, т.е.

α + = 2a, α = a2 + b2. (13)

При делении двух комплексных чисел в алгеб­раической форме следует ожидать, что частное вы­ражается также числом того же вида, т. е. α/β = u + vi, где u, v R. Выведем правило деления комплексных чисел. Пусть даны числа α = a + bi, β = c + di, причем β ≠ 0, т. е. c2 + d2 ≠ 0. Послед­нее неравенство означает, что c и d одновременно в нуль не обращаются (исключается случай, когда с = 0, d = 0). Применяя формулу (12) и вто­рое из равенств (13), находим:

Следовательно, частное двух комплексных чисел определяется формулой:

соответствующей формуле (4).

С помощью полученной формулы для числа β = с + di можно найти обратное ему число β-1 = 1/β. Полагая в формуле (14) а = 1, b = 0, получаем



Эта формула определяет число, обратное данному комплексному числу, отличному от нуля; это число также является комплексным.

Например: (3 + 7i) + (4 + 2i) = 7 + 9i;

(6 + 5i) – (3 + 8i) = 3 – 3i;

(5 – 4i)(8 – 9i) = 4 – 77i;

Действия над комплексными числами в алгебраической форме.

55. Аргумент комплексного числа. Тригонометрическая форма записи комплексного числа (вывод).

Арг.ком.числа. – между положительным направлением действительной оси Х вектором изображающим данное число.

Формула тригон. Числа: ,

Похожие публикации

ДАЛЬШЕ