Метод наименьших квадратов используется для. Аппроксимация опытных данных
Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:
С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.
С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.
Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.
Аппроксимирующая кривая, построенная по методу наименьших квадратов
Метод наименьших квадратов используется:
Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;
Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;
Для аппроксимации точечных значений некоторой аппроксимирующей функцией.
Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,
Заданный массив экспериментальных данных в узловых точках .
Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.
В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m
Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.
![]()
∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).
∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).
∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).
В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:
- неизвестные коэффициенты аппроксимирующего многочлена степени m;
Количество заданных табличных значений.
Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным
. В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.
Аппроксимация исходных данных линейной зависимостью
(линейная регрессия)
В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:
Координаты узловых точек таблицы;
Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.
Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).
Алгоритм реализации метода наименьших квадратов
1. Начальные данные:
Задан массив экспериментальных данных с количеством измерений N
Задана степень аппроксимирующего многочлена (m)
2. Алгоритм вычисления:
2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)
- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)
- индекс номера строки квадратной матрицы системы уравнений
2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.
2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.
Аппроксимация с помощью других функций
Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.
Логарифмическая аппроксимация
Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:
Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных аи b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.
Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.
Вывод формул для нахождения коэффициентов.Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции
по переменным аи b, приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК). 
При данных аи bфункция
принимает наименьшее значение.
Вот и весь метод наименьших квадратов. Формула для нахождения параметра aсодержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a.
Основная сфера применения таких полиномов - обработка экспериментальных данных (построение эмпирических формул). Дело в том, что интерполяционный полином, построенный по значениям функции, полученным с помощью эксперимента, будет испытывать сильное влияние "экспериментального шума", к тому же при интерполировании узлы интерполяции не могут повторяться, т.е. нельзя использовать результаты повторных экспериментов при одинаковых условиях. Среднеквадратичный же полином сглаживает шумы и позволяет использовать результаты многократных экспериментов.
Численное интегрирование и дифференцирование. Пример.
Численное интегрирование – вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.
Численное дифференцирование – совокупность методов вычисления значения производной дискретно заданной функции.
Интегрирование
Постановка задачи.
Математическая постановка задачи: необходимо найти значение определенного интеграла
где a, b - конечны, f(x) - непрерывна на [а, b].
При решении практических задач часто бывает, что интеграл неудобно или невозможно взять аналитически: он может не выражаться в элементарных функциях, подынтегральная функция может быть задана в виде таблицы и пр. В таких случаях применяют методы численного интегрирования. Численные методы интегрирования используют замену площади криволинейной трапеции на конечную сумму площадей более простых геометрических фигур, которые могут быть вычислены точно. В этом смысле говорят об использовании квадратурных формул.
В большинстве методов используется представление интеграла в виде конечной суммы (квадратурная формула):
В основе квадратурных формул лежит идея замена на отрезке интегрирования графика подынтегрального выражения функциями более простого вида, которые легко могут быть проинтегрированы аналитически и, таким образом, легко вычислены. Наиболее просто задача построения квадратурных формул реализуется для полиномиальных математических моделей.
Можно выделить три группы методов:
1. Метод с разбиением отрезка интегрирования на равные интервалы. Разбиение на интервалы производится заранее, обычно интервалы выбираются равными (чтобы легче было вычислить функцию на концах интервалов). Вычисляют площади и суммируют их (методы прямоугольников, трапеции, Симпсона).
2. Методы с разбиением отрезка интегрирования с помощью специальных точек (метод Гаусса).
3. Вычисление интегралов с помощью случайных чисел (метод Монте-Карло).
Метод прямоугольников. Пусть функцию (рисунок) необходимо проинтегрировать численным методом на отрезке . Разделим отрезок на N равных интервалов. Площадь каждой из N криволинейных трапеций можно заменить на площадь прямоугольника.

Ширина всех прямоугольников одинакова и равна:
![]()
В качестве выбора высоты прямоугольников можно выбрать значение функции на левой границе. В этом случае высота первого прямоугольника составит f(a), второго – f(x 1),…, N-f(N-1).
Если в качестве выбора высоты прямоугольника взять значение функции на правой границе, то в этом случае высота первого прямоугольника составит f(x 1), второго – f(x 2), …, N – f(x N).
Как видно, в этом случае одна из формул дает приближение к интегралу с избытком, а вторая с недостатком. Существует еще один способ – использовать для аппроксимации значение функции в середине отрезка интегрирования:
Оценка абсолютной погрешности метода прямоугольников (середина)
Оценка абсолютной погрешности методов левых и правых прямоугольников.
Пример.
Вычислить для всего интервала и с делением интервала на четыре участка
Решение.
Аналитическое вычисление данного интеграла дает I=агсtg(1)–агсtg(0)=0,7853981634. В нашем случае:
1)h = 1; xо = 0; x1 = 1;
2) h = 0,25 (1/4); x0 = 0; x1 = 0,25; x2 = 0,5; х3 = 0,75; x4 = 1;
Вычислим методом левых прямоугольников:
![]()
Вычислим методом правых прямоугольников:
![]()
Вычислим методом средних прямоугольников:
![]()

Метод трапеций.
Использование для интерполяции полинома первой степени (прямая линия, проведенная через две точки) приводит к формуле трапеций. В качестве узлов интерполирования берутся концы отрезка интегрирования. Таким образом, криволинейная трапеция заменяется на обычную трапецию, площадь которой может быть найдена как произведение полусуммы оснований на высоту

В случае N отрезков интегрирования для всех узлов, за исключением крайних точек отрезка, значение функции войдет в общую сумму дважды (так как соседние трапеции имеют одну общую сторону)
![]()
Формула трапеции может быть получена, если взять половину суммы формул прямоугольников по правому и левому краям отрезка:
Проверка устойчивости решения.Как правило, чем меньше длина каждого интервала, т.е. чем больше число этих интервалов, тем меньше различаются приближенное и точное значение интеграла. Это справедливо для большинства функций. В методе трапеций ошибка вычисления интеграла ϭ приблизительно пропорциональна квадрату шага интегрирования (ϭ ~ h 2).Таким образом, для вычисления интеграла некоторой функции в переделах a,b необходимо разделить отрезок на N 0 интервалов и найти сумму площадей трапеции. Затем нужно увеличить число интервалов N 1 , опять вычислить сумму трапеции и сравнить полученное значение с предыдущим результатом. Это следует повторять до тех пор (N i), пока не будет достигнута заданная точность результата (критерий сходимости).
Для методов прямоугольников и трапеции обычно на каждом шаге итерации число интервалов увеличивается в 2 раза (N i +1 =2N i).
Критерий сходимости:
Главное преимущество правила трапеций – его простота. Однако если при вычислении интеграла требуется высокая точность, применение этого метода может потребовать слишком большого количества итераций.
Абсолютная погрешность метода трапеций оценивается как
.
Пример.
Вычислить приближенно определенный интеграл по формуле трапеций.
а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.
Решение:
а) По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения:
.
Таким образом, общая формула трапеций сокращается до приятных размеров:

Окончательно:
Напоминаю, что полученное значение – это приближенное значение площади.
б) Разобьём отрезок интегрирования на 5 равных частей, то есть . увеличивая количество отрезков, мы увеличиваем точность вычислений.
Если , то формула трапеций принимает следующий вид:
Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.
При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:
В первой строке записываем «счётчик»
В результате:
Ну что же, уточнение, и серьёзное, действительно есть!
Если для 3-х отрезков разбиения , то для 5-ти отрезков . Если взять еще больше отрезком => будет еще точнее.
Формула Симпсона.
Формула трапеции дает результат, сильно зависящий от величины шага h, что сказывается на точности вычисления определенного интеграла особенно в тех случаях, когда функция имеет немонотонный характер. Можно предположить повышение точности вычислений, если вместо отрезков прямых, заменяющих криволинейные фрагменты графика функции f(x), использовать, например, фрагменты парабол, приводимых через три соседние точки графика. Подобная геометрическая интерпретация лежит в основе метода Симпсона для вычисления определенного интеграла. Весь интервал интегрирования a,b разбивается N отрезков, длина отрезка также будет равна h=(b-a)/N.

Формула Симпсона имеет вид:
остаточный член
С увеличением длины отрезков точность формулы падает, поэтому для увеличения точности применяют составную формулу Симпсона. Весь интервал интегрирования разбивается на четное число одинаковых отрезков N, длина отрезка также будет равна h=(b-a)/N. Составная формула Симпсона имеет вид:
В формуле выражения в скобках представляют собой суммы значений подынтегральной функции соответственно на концах нечетных и четных внутренних отрезков.
Остаточный член формулы Симпсона пропорционален уже четвертой степени шага:
![]()
Пример:
Пользуясь правилом Симпсона вычислить интеграл . (Точное решение - 0,2)


Метод Гаусса
Квадратурная формула Гаусса. Основной принцип квадратурных формул второй разновидности виден из рисунка 1.12: необходимо так разместить точких 0 и х 1 внутри отрезка [a;b], чтобы площади "треугольников" в сумме были равны площади "сегмента". При использовании формулы Гаусса исходный отрезок [a;b] сводится к отрезку [-1;1] заменой переменной х на
0.5∙(b– a)∙t+ 0.5∙(b + a).
Тогда
, где
.
Такая замена возможна, если a и b конечны, а функция f(x) непрерывна на [a;b]. Формула Гаусса при n точках x i, i=0,1,..,n-1 внутри отрезка [a;b]:
, (1.27)
где t i и A iдля различных n приводятся в справочниках. Например, при n=2
A 0 =A 1 =1; при n=3: t 0 =t 2 »0.775, t 1 =0, A 0 =A 2 »0.555, A 1 »0.889.
Квадратурная формула Гаусса
получена с весовой функцией равной единице p(x)=1 и узлами x i, являющимися корнями полиномов Лежандра
![]()
Коэффициенты A iлегко вычисляются по формулам
i=0,1,2,...n.
Значения узлов и коэффициентов для n=2,3,4,5 приведены в таблице
| Порядок | Узлы | Коэффициенты |
| n=2 | x 1=0 x 0 =-x 2=0.7745966692 | A 1=8/9 A 0 =A 2=5/9 |
| n=3 | x 2 =-x 1=0.3399810436 x 3 =-x 0=0.8611363116 | A 1 =A 2=0.6521451549 A 0 =A 3=0.6521451549 |
| n=4 | x 2 =0 x 3 =-x 1 =0.5384693101 x 4 =-x 0 =0.9061798459 | A 0 =0.568888899 A 3 =A 1 =0.4786286705 A 0 =A 4 =0.2869268851 |
| n=5 | x 5 =-x 0 =0.9324695142 x 4 =-x 1 =0.6612093865 x 3 =-x 2 =0.2386191861 | A 5 =A 0 =0.1713244924 A 4 =A 1 =0.3607615730 A 3 =A 2 =0.4679139346 |
Пример.
Вычислить значение по формуле Гаусса для n=2:
Точное значение:
.
Алгоритм вычисления интеграла по формуле Гаусса предусматривает не удвоение числа микроотрезков, а увеличение числа ординат на 1 и сравнение полученных значений интеграла. Преимущество формулы Гаусса – высокая точность при сравнительно малом числе ординат. Недостатки: неудобна при расчетах вручную; необходимо держать в памяти ЭВМ значения t i, A i для различных n.
Погрешность квадратурной формулы Гаусса на отрезке будет при этом Для формула остаточного члена будет причем коэффициент αN быстро убывает с ростом N. Здесь ![]()
Формулы Гаусса обеспечивают высокую точность уже при небольшом количестве узлов (от 4 до 10) В этом случае В практических же вычислениях число узлов составляет от нескольких сотен до нескольких тысяч. Отметим также, что веса квадратур Гаусса всегда положительны, что обеспечивает устойчивость алгоритма вычисления сумм
Я математик-программист. Самый большой скачок в своей карьере я совершил, когда научился говорить:«Я ничего не понимаю!» Сейчас мне не стыдно сказать светилу науки, что мне читает лекцию, что я не понимаю, о чём оно, светило, мне говорит. И это очень сложно. Да, признаться в своём неведении сложно и стыдно. Кому понравится признаваться в том, что он не знает азов чего-то-там. В силу своей профессии я должен присутствовать на большом количестве презентаций и лекций, где, признаюсь, в подавляющем большинстве случаев мне хочется спать, потому что я ничего не понимаю. А не понимаю я потому, что огромная проблема текущей ситуации в науке кроется в математике. Она предполагает, что все слушатели знакомы с абсолютно всеми областями математики (что абсурдно). Признаться в том, что вы не знаете, что такое производная (о том, что это - чуть позже) - стыдно.
Но я научился говорить, что я не знаю, что такое умножение. Да, я не знаю, что такое подалгебра над алгеброй Ли. Да, я не знаю, зачем нужны в жизни квадратные уравнения. К слову, если вы уверены, что вы знаете, то нам есть над чем поговорить! Математика - это серия фокусов. Математики стараются запутать и запугать публику; там, где нет замешательства, нет репутации, нет авторитета. Да, это престижно говорить как можно более абстрактным языком, что есть по себе полная чушь.
Знаете ли вы, что такое производная? Вероятнее всего вы мне скажете про предел разностного отношения. На первом курсе матмеха СПбГУ Виктор Петрович Хавин мне определил производную как коэффициент первого члена ряда Тейлора функции в точке (это была отдельная гимнастика, чтобы определить ряд Тейлора без производных). Я долго смеялся над таким определением, покуда в итоге не понял, о чём оно. Производная не что иное, как просто мера того, насколько функция, которую мы дифференцируем, похожа на функцию y=x, y=x^2, y=x^3.
Я сейчас имею честь читать лекции студентам, которые боятся математики. Если вы боитесь математики - нам с вами по пути. Как только вы пытаетесь прочитать какой-то текст, и вам кажется, что он чрезмерно сложен, то знайте, что он хреново написан. Я утверждаю, что нет ни одной области математики, о которой нельзя говорить «на пальцах», не теряя при этом точности.
Задача на ближайшее время: я поручил своим студентам понять, что такое линейно-квадратичный регулятор . Не постесняйтесь, потратьте три минуты своей жизни, сходите по ссылке. Если вы ничего не поняли, то нам с вами по пути. Я (профессиональный математик-программист) тоже ничего не понял. И я уверяю, в этом можно разобраться «на пальцах». На данный момент я не знаю, что это такое, но я уверяю, что мы сумеем разобраться.
Итак, первая лекция, которую я собираюсь прочитать своим студентам после того, как они в ужасе прибегут ко мне со словами, что линейно-квадратичный регулятор - это страшная бяка, которую никогда в жизни не осилить, это методы наименьших квадратов. Умеете ли вы решать линейные уравнения? Если вы читаете этот текст, то скорее всего нет.
Итак, даны две точки (x0, y0), (x1, y1), например, (1,1) и (3,2), задача найти уравнение прямой, проходящей через эти две точки:
иллюстрация

Эта прямая должна иметь уравнение типа следующего:
Здесь альфа и бета нам неизвестны, но известны две точки этой прямой:
Можно записать это уравнение в матричном виде:
Тут следует сделать лирическое отступление: что такое матрица? Матрица это не что иное, как двумерный массив. Это способ хранения данных, более никаких значений ему придавать не стоит. Это зависит от нас, как именно интерпретировать некую матрицу. Периодически я буду её интерпретировать как линейное отображение, периодически как квадратичную форму, а ещё иногда просто как набор векторов. Это всё будет уточнено в контексте.
Давайте заменим конкретные матрицы на их символьное представление:
Тогда (alpha, beta) может быть легко найдено:
Более конкретно для наших предыдущих данных:
Что ведёт к следующему уравнению прямой, проходящей через точки (1,1) и (3,2):
Окей, тут всё понятно. А давайте найдём уравнение прямой, проходящей через три точки: (x0,y0), (x1,y1) и (x2,y2):
Ой-ой-ой, а ведь у нас три уравнения на две неизвестных! Стандартный математик скажет, что решения не существует. А что скажет программист? А он для начала перепишет предыдующую систему уравнений в следующем виде:
В нашем случае векторы i,j,b трёхмерны, следовательно, (в общем случае) решения этой системы не существует. Любой вектор (alpha\*i + beta\*j) лежит в плоскости, натянутой на векторы (i, j). Если b не принадлежит этой плоскости, то решения не существует (равенства в уравнении не достичь). Что делать? Давайте искать компромисс. Давайте обозначим через e(alpha, beta) насколько именно мы не достигли равенства:
И будем стараться минимизировать эту ошибку:
Почему квадрат?
Мы ищем не просто минимум нормы, а минимум квадрата нормы. Почему? Сама точка минимума совпадает, а квадрат даёт гладкую функцию (квадратичную функцию от агрументов (alpha,beta)), в то время как просто длина даёт функцию в виде конуса, недифференцируемую в точке минимума. Брр. Квадрат удобнее.
Очевидно, что ошибка минимизируется, когда вектор e ортогонален плоскости, натянутой на векторы i и j.
Иллюстрация

Иными словами: мы ищем такую прямую, что сумма квадратов длин расстояний от всех точек до этой прямой минимальна:
UPDATE: тут у меня косяк, расстояние до прямой должно измеряться по вертикали, а не ортогональной проекцией. комментатор прав.
Иллюстрация

Совсеми иными словами (осторожно, плохо формализовано, но на пальцах должно быть ясно): мы берём все возможные прямые между всеми парами точек и ищем среднюю прямую между всеми:
Иллюстрация

Иное объяснение на пальцах: мы прикрепляем пружинку между всеми точками данных (тут у нас три) и прямой, что мы ищем, и прямая равновесного состояния есть именно то, что мы ищем.
Минимум квадратичной формы
Итак, имея данный вектор b и плоскость, натянутую на столбцы-векторы матрицы A (в данном случае (x0,x1,x2) и (1,1,1)), мы ищем вектор e с минимум квадрата длины. Очевидно, что минимум достижим только для вектора e, ортогонального плоскости, натянутой на столбцы-векторы матрицы A:Иначе говоря, мы ищем такой вектор x=(alpha, beta), что:
Напоминаю, что этот вектор x=(alpha, beta) является минимумом квадратичной функции ||e(alpha, beta)||^2:
Тут нелишним будет вспомнить, что матрицу можно интерпретирвать в том числе как и квадратичную форму, например, единичная матрица ((1,0),(0,1)) может быть интерпретирована как функция x^2 + y^2:
квадратичная форма

Вся эта гимнастика известна под именем линейной регрессии .
Уравнение Лапласа с граничным условием Дирихле
Теперь простейшая реальная задача: имеется некая триангулированная поверхность, необходимо её сгладить. Например, давайте загрузим модель моего лица:
Изначальный коммит доступен . Для минимизации внешних зависимостей я взял код своего софтверного рендерера, уже на хабре. Для решения линейной системы я пользуюсь OpenNL , это отличный солвер, который, правда, очень сложно установить: нужно скопировать два файла (.h+.c) в папку с вашим проектом. Всё сглаживание делается следующим кодом:
For (int d=0; d<3; d++) {
nlNewContext();
nlSolverParameteri(NL_NB_VARIABLES, verts.size());
nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE);
nlBegin(NL_SYSTEM);
nlBegin(NL_MATRIX);
for (int i=0; i<(int)verts.size(); i++) {
nlBegin(NL_ROW);
nlCoefficient(i, 1);
nlRightHandSide(verts[i][d]);
nlEnd(NL_ROW);
}
for (unsigned int i=0; i
X, Y и Z координаты отделимы, я их сглаживаю по отдельности. То есть, я решаю три системы линейных уравнений, каждое имеет количество переменных равным количеству вершин в моей модели. Первые n строк матрицы A имеют только одну единицу на строку, а первые n строк вектора b имеют оригинальные координаты модели. То есть, я привязываю по пружинке между новым положением вершины и старым положением вершины - новые не должны слишком далеко уходить от старых.
Все последующие строки матрицы A (faces.size()*3 = количеству рёбер всех треугольников в сетке) имеют одно вхождение 1 и одно вхождение -1, причём вектор b имеет нулевые компоненты напротив. Это значит, я вешаю пружинку на каждое ребро нашей треугольной сетки: все рёбра стараются получить одну и ту же вершину в качестве отправной и финальной точки.
Ещё раз: переменными являются все вершины, причём они не могут далеко отходить от изначального положения, но при этом стараются стать похожими друг на друга.
Вот результат:

Всё бы было хорошо, модель действительно сглажена, но она отошла от своего изначального края. Давайте чуть-чуть изменим код:
For (int i=0; i<(int)verts.size(); i++) { float scale = border[i] ? 1000: 1; nlBegin(NL_ROW); nlCoefficient(i, scale); nlRightHandSide(scale*verts[i][d]); nlEnd(NL_ROW); }
В нашей матрице A я для вершин, что находятся на краю, добавляю не строку из разряда v_i = verts[i][d], а 1000*v_i = 1000*verts[i][d]. Что это меняет? А меняет это нашу квадратичную форму ошибки. Теперь единичное отклонение от вершины на краю будет стоить не одну единицу, как раньше, а 1000*1000 единиц. То есть, мы повесили более сильную пружинку на крайние вершины, решение предпочтёт сильнее растянуть другие. Вот результат:

Давайте вдвое усилим пружинки между вершинами:
nlCoefficient(face[ j ], 2);
nlCoefficient(face[(j+1)%3], -2);
Логично, что поверхность стала более гладкой:

А теперь ещё в сто раз сильнее:

Что это? Представьте, что мы обмакнули проволочное кольцо в мыльную воду. В итоге образовавшаяся мыльная плёнка будет стараться иметь наименьшую кривизну, насколько это возможно, касаясь-таки границы - нашего проволочного кольца. Именно это мы и получили, зафиксировав границу и попросив получить гладкую поверхность внутри. Поздравляю вас, мы только что решили уравнение Лапласа с граничными условиями Дирихле. Круто звучит? А на деле всего-навсего одну систему линейных уравнений решить.
Уравнение Пуассона
Давайте ещё крутое имя вспомним.Предположим, что у меня есть такая картинка:

Всем хороша, только стул мне не нравится.
Разрежу картинку пополам:

И выделю руками стул:
Затем всё, что белое в маске, притяну к левой части картинки, а заодно по всей картинке скажу, что разница между двумя соседними пикселями должна равняться разнице между двумя соседними пикселями правой картинки:
For (int i=0; i Вот результат: У меня есть некоторое количество фотографий образцов ткани типа вот такой: Моя задача сделать бесшовные текстуры из фотографий вот такого качества. Для начала я (автоматически) ищу повторяющийся паттерн: Если я вырежу прямо вот этот четырёхугольник, то из-за искажений у меня края не сойдутся, вот пример четыре раза повторённого паттерна: Вот фрагмент, где чётко видно шов: Поэтому я вырезать буду не по ровной линии, вот линия разреза: А вот повторённый четыре раза паттерн: И его фрагмент, чтобы было виднее: Уже лучше, рез шёл не по прямой линии, обойдя всякие завитушки, но всё же шов виден из-за неравномерности освещения на оригинальной фотографии. Вот тут-то и приходит на помощь метод наименьших квадратов для уравнения Пуассона. Вот конечный результат после выравнивания освещения: Текстура получилась отлично бесшовной, и всё это автоматически из фотографии весьма посредственного качества. Не бойтесь математики, ищите простые объяснения, и будет вам инженерное счастье. Он имеет множество применений, так как позволяет осуществлять приближенное представление заданной функции другими более простыми. МНК может оказаться чрезвычайно полезным при обработке наблюдений, и его активно используют для оценки одних величин по результатам измерений других, содержащих случайные ошибки. Из этой статьи вы узнаете, как реализовать вычисления по методу наименьших квадратов в Excel. Предположим, имеются два показателя X и Y. Причем Y зависит от X. Так как МНК интересует нас с точки зрения регрессионного анализа (в Excel его методы реализуются с помощью встроенных функций), то стоит сразу же перейти к рассмотрению конкретной задачи. Итак, пусть X — торговая площадь продовольственного магазина, измеряемая в квадратных метрах, а Y — годовой товарооборот, определяемый в миллионах рублей. Требуется сделать прогноз, какой товарооборот (Y) будет у магазина, если у него та или иная торговая площадь. Очевидно, что функция Y = f (X) возрастающая, так как гипермаркет продает больше товаров, чем ларек. Допустим, у нас есть таблица, построенная по данным для n магазинов. Согласно математической статистике, результаты будут более-менее корректными, если исследуются данные по хотя бы 5-6 объектам. Кроме того, нельзя использовать «аномальные» результаты. В частности, элитный небольшой бутик может иметь товарооборот в разы больший, чем товарооборот больших торговых точек класса «масмаркет». Данные таблицы можно изобразить на декартовой плоскости в виде точек M 1 (x 1 , y 1), … M n (x n , y n). Теперь решение задачи сведется к подбору аппроксимирующей функции y = f (x), имеющей график, проходящий как можно ближе к точкам M 1, M 2, .. M n . Конечно, можно использовать многочлен высокой степени, но такой вариант не только труднореализуем, но и просто некорректен, так как не будет отражать основную тенденцию, которую и нужно обнаружить. Самым разумным решением является поиск прямой у = ax + b, которая лучше всего приближает экспериментальные данные, a точнее, коэффициентов - a и b. При любой аппроксимации особую важность приобретает оценка ее точности. Обозначим через e i разность (отклонение) между функциональными и экспериментальными значениями для точки x i , т. е. e i = y i - f (x i). Очевидно, что для оценки точности аппроксимации можно использовать сумму отклонений, т. е. при выборе прямой для приближенного представления зависимости X от Y нужно отдавать предпочтение той, у которой наименьшее значение суммы e i во всех рассматриваемых точках. Однако, не все так просто, так как наряду с положительными отклонениями практически будут присутствовать и отрицательные. Решить вопрос можно, используя модули отклонений или их квадраты. Последний метод получил наиболее широкое распространение. Он используется во многих областях, включая регрессионный анализ (в Excel его реализация осуществляется с помощью двух встроенных функций), и давно доказал свою эффективность. В Excel, как известно, существует встроенная функция автосуммы, позволяющая вычислить значения всех значений, расположенных в выделенном диапазоне. Таким образом, ничто не помешает нам рассчитать значение выражения (e 1 2 + e 2 2 + e 3 2 + ... e n 2). В математической записи это имеет вид: Так как изначально было принято решение об аппроксимировании с помощью прямой, то имеем: Таким образом, задача нахождения прямой, которая лучше всего описывает конкретную зависимость величин X и Y, сводится к вычислению минимума функции двух переменных: Для этого требуется приравнять к нулю частные производные по новым переменным a и b, и решить примитивную систему, состоящую из двух уравнений с 2-мя неизвестными вида: После нехитрых преобразований, включая деление на 2 и манипуляции с суммами, получим: Решая ее, например, методом Крамера, получаем стационарную точку с некими коэффициентами a * и b * . Это и есть минимум, т. е. для предсказания, какой товарооборот будет у магазина при определенной площади, подойдет прямая y = a * x + b * , представляющая собой регрессионную модель для примера, о котором идет речь. Конечно, она не позволит найти точный результат, но поможет получить представление о том, окупится ли покупка в кредит магазина конкретной площади. В "Эксель" имеется функция для расчета значения по МНК. Она имеет следующий вид: «ТЕНДЕНЦИЯ» (известн. значения Y; известн. значения X; новые значения X; конст.). Применим формулу расчета МНК в Excel к нашей таблице. Для этого в ячейку, в которой должен быть отображен результат расчета по методу наименьших квадратов в Excel, введем знак «=» и выберем функцию «ТЕНДЕНЦИЯ». В раскрывшемся окне заполним соответствующие поля, выделяя: Кроме того, в формуле присутствует логическая переменная «Конст». Если ввести в соответствующее ей поле 1, то это будет означать, что следует осуществить вычисления, считая, что b = 0. Если нужно узнать прогноз для более чем одного значения x, то после ввода формулы следует нажать не на «Ввод», а нужно набрать на клавиатуре комбинацию «Shift» + «Control»+ «Enter» («Ввод»). Регрессионный анализ может быть доступен даже чайникам. Формула Excel для предсказания значения массива неизвестных переменных — «ТЕНДЕНЦИЯ» — может использоваться даже теми, кто никогда не слышал о методе наименьших квадратов. Достаточно просто знать некоторые особенности ее работы. В частности: Реализуется с помощью нескольких функций. Одна из них называется «ПРЕДСКАЗ». Она аналогична «ТЕНДЕНЦИИ», т. е. выдает результат вычислений по методу наименьших квадратов. Однако только для одного X, для которого неизвестно значение Y. Теперь вы знаете формулы в Excel для чайников, позволяющие спрогнозировать величину будущего значения того или иного показателя согласно линейному тренду. Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель y x =a+bx, необходимо определить конкретные значения коэффициентов модели. При различных значениях а и b можно построить бесконечное число зависимостей вида y x =a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов. Линейную функцию a+bx ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов. Обозначим: Y i - значение, вычисленное по уравнению Y i =a+bx i . y i - измеренное значение, ε i =y i -Y i - разность между измеренными и вычисленными по уравнению значениям, ε i =y i -a-bx i . В методе наименьших квадратов требуется, чтобы ε i , разность между измеренными y i и вычисленными по уравнению значениям Y i , была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей: Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы: Если разделить обе части нормальных уравнений на n, то получим: Учитывая, что Получим При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле: Полученная прямая является оценкой для теоретической линии регрессии. Имеем: Итак, Регрессия может быть прямой (b>0) и обратной (b Пример 1. Результаты измерения величин X и Y даны в таблице: Предполагая, что между X и Y существует линейная зависимость y=a+bx, способом наименьших квадратов определить коэффициенты a и b. Решение. Здесь n=5 и нормальная система (2) имеет вид Решая эту систему, получим: b=0.425, a=1.175. Поэтому y=1.175+0.425x. Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y). Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X. Решение. 1. Проведем упорядочивание данных по значениям x i и y i . Получаем новую таблицу: Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения. Согласно формуле (4), вычисляем коэффициента регрессии а по формуле (5) Таким образом, выборочное уравнение регрессии имеет вид y=-59.34+1.3804x. На рис.4 видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений y i от Y i , где y i наблюдаемые, а Y i определяемые регрессией значения, составим таблицу: Значения Y i вычислены согласно уравнению регрессии. Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.

Пример из жизни
Я специально не стал делать вылизанные результаты, т.к. мне хотелось всего-навсего показать, как именно можно применять методы наименьших квадратов, это обучающий код. Давайте я теперь дам пример из жизни:

Скрытый текст


Скрытый текст

Скрытый текст



Постановка задачи на конкретном примере
Несколько слов о корректности исходных данных, используемых для предсказания
Суть метода
Оценка точности
Метод наименьших квадратов





Как реализоавать метод наименьших квадратов в Excel
Некоторые особенности

Функция «ПРЕДСКАЗ»
(2)
(3)
, отсюда , подставляя значение a в первое уравнение, получим:
является уравнением линейной регрессии.x i
-2
0
1
2
4
y i
0.5
1
1.5
2
3
x i =-2+0+1+2+4=5;
x i 2 =4+0+1+4+16=25
x i y i =-2 0.5+0 1+1 1.5+2 2+4 3=16.5
y i =0.5+1+1.5+2+3=8![]()
x i
180
172
173
169
175
170
179
170
167
174
y i
186
180
176
171
182
166
182
172
169
177
x i
167
169
170
170
172
173
174
175
179
180
y i
169
171
166
172
180
176
177
182
182
186
x i
y i
x i 2
x i y i
167
169
27889
28223
169
171
28561
28899
170
166
28900
28220
170
172
28900
29240
172
180
29584
30960
173
176
29929
30448
174
177
30276
30798
175
182
30625
31850
179
182
32041
32578
180
186
32400
33480
∑x i =1729
∑y i =1761
∑x i 2 299105
∑x i y i =304696
x=172.9
y=176.1
x i 2 =29910.5
xy=30469.6
Нанесем на координатной плоскости точки (x i ; y i) и отметим прямую регрессии.
Рис 4x i
y i
Y i
Y i -y i
167
169
168.055
-0.945
169
171
170.778
-0.222
170
166
172.140
6.140
170
172
172.140
0.140
172
180
174.863
-5.137
173
176
176.225
0.225
174
177
177.587
0.587
175
182
178.949
-3.051
179
182
184.395
2.395
180
186
185.757
-0.243