Нестандартные задачи как средство развития логического мышления. Нестандартные задачи и их виды Учитель математики высшей категории
Копилка полезных уроков

Нестандартные задачи как средство развития логического мышления. Нестандартные задачи и их виды Учитель математики высшей категории

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Теоретические основы формирования интереса к математике

1.1 Сущность понятия «интерес»

1.2 Нестандартные задачи и их виды

1.3 Методы решения нестандартных задач

2. Формирование у школьников умений решать нестандартные задачи

2.1 Нестандартные задания для учащихся начальной школы

2.2 Нестандартные задания для основной школы

Заключение

Литература

Введение

Стратегия современного образования заключается в предоставлении возможности всем учащимся проявить свои таланты и творческий потенциал, подразумевающий возможность реализации личных планов. Поэтому на сегодняшний день актуальна проблема поиска средств развития мыслительных способностей, связанных с творческой деятельностью учащихся как в коллективной, так и в индивидуальной форме обучения. Данной проблеме посвящены работы педагогов Т.М. Давыденко, Л.В. Занкова, А.И. Савенкова и др., в которых акцентируется внимание на определении средств повышения продуктивной познавательной деятельности учащихся, организации их творческой деятельности.

Активному приобретению знаний способствует интерес к предмету, так как ученики занимаются в силу своего внутреннего влечения, по собственному желанию. Тогда учебный материал они усваивают достаточно легко и основательно. Но в последнее время отмечается тревожный и парадоксальный факт: интерес к учению от класса к классу уменьшается, несмотря на то, что интерес к явлениям и событиям окружающего мира продолжает развиваться, становится более сложным по содержанию.

Воспитание интереса школьников к математике, развитие их математических способностей невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, числовых головоломок, задач-сказок и т.п. В связи с этим наметилась тенденция использования нестандартных задач как необходимого компонента обучения учащихся математике (С. Г. Губа, 1972).

Педагогический опыт свидетельствует, что «…эффективно организованная учебная деятельность учащихся в процессе решения нестандартных задач является важнейшим средством формирования математической культуры и качеств математического мышления; органическое сочетание этих качеств проявляется в особых способностях человека, дающих ему возможность успешно осуществлять творческую деятельность» .

Таким образом, с одной стороны, необходимо учить учащихся решению нестандартных задач, так как таким задачам принадлежит особая роль в формировании интереса к предмету и в формировании творческой личности, с другой стороны, многочисленные данные свидетельствуют о том, что вопросу формирования умения решать такие задачи, обучения приемам поиска решения задач не уделяется должного внимания .

Вышеизложенное обусловило выбор темы исследования: «Нестандартные задачи как средство формирования интереса к математике у учащихся».

Объект исследования

-процесс формирования интереса к математике у учащихся школы.

Предмет исследования

-формирование у учащихся умений решать нестандартные задачи для формирования интереса к математике.

Цель исследования

-доказать, что знание различных методов способствует формированию у учащихся умений решать нестандартные задачи.

В соответствии с поставленной целью определены задачи исследования:

· Изучение психолого-педагогической и научно-методической литературы и характеристика понятий «интерес» и «нестандартная задача».

· Выявление видов нестандартных задач.

· Ознакомление с методами решения нестандартных задач.

· Составление дидактических материалов для учащихся по формированию умений решать нестандартные задачи разными методами.

Данная работа состоит из введения, двух глав, заключения и списка литературы. Первая глава носит теоретический характер, в ней рассмотрены различные трактовки понятия «интерес», освещена роль нестандартных задач в формировании интереса к математике у учащихся, приведены некоторые классификации нестандартных задач. Во второй главе представлен составленный автором исследования дидактический материал, направленный на формирование умений решать нестандартные задачи разными методами

В ходе исследования использовался теоретический метод, анализ учебной и методической литературы, моделирование.

1. Теоретические основы формирования интереса к математике

1.1Сущность понятия«интерес»

Существуют различные подходы к понятию «интерес». Различные методисты и учёные трактуют его по-разному. Так, например, лингвист, лексикограф, доктор филологических наук и профессор Сергей Иванович Ожегов даёт несколько определений понятия «интерес»:

1. Особое внимание к чему-нибудь, желание вникнуть в суть, узнать, понять. (Проявлять интерес к делу. Утратить интерес к собеседнику. Обострённый интерес ко всему новому).

2. Занимательность, значительность. (Интерес рассказа в его сюжете. Дело имеет общественный интерес).

3. Многочисленные нужды, потребности. (Групповые интересы. Защищать свои интересы. Духовные интересы. Это не в наших интересах).

4. Выгода, корысть (разг.). (У него здесь свой интерес. Играть на интерес - на деньги) (С.И. Ожегов, 2009).

Русский учёный и писатель Владимир Иванович Даль, прославившийся как автор «Толкового словаря живого великорусского языка», даёт такое определение:

«Интерес-польза, выгода, прибыль; проценты, рост на деньги; сочувствие в ком или чем, участие, забота. Занимательность или значение, важность дела.

Интерес - это избирательная направленность человека, его внимания, мыслей, помыслов (С.Л. Рубинштейн).

Интерес - это своеобразный сплав эмоционально-волевых и интеллектуальных процессов, повышающий активность сознания и деятельности человека (Л.А. Гордон).

Интерес - это активная познавательная направленность человека на тот или иной предмет, явление и деятельность, созданная с положительным эмоциональным отношением к ним (В.А. Крутецкий)» .

Интересы человека определяются общественно-историческими и индивидуальными условиями его жизни. С помощью интереса устанавливается связь субъекта с объективным миром. Все, что составляет предмет интереса, почерпнуто человеком из окружающей действительности. Но предметом интереса для человека является далеко не все, что его окружает, а лишь то, что имеет для него необходимость, значимость, ценность и привлекательность.

Интересы людей чрезвычайно разнообразны. Существует несколько классификаций интересов:

­ материальные интересы (Проявляются в стремлении к жилищным удобствам, гастрономическим изделиям, к одежде и т.п.);

­ духовные интересы (Это познавательные интересы к математике, физике, химии, биологии, философии, психологии и т.п., интересы к литературе и разным видам искусства (музыке, живописи, театру). Характеризуют высокий уровень развития личности.);

­ общественные интересы (Включают интерес к общественной работе, к организационной деятельности.);

· по направленности:

­ широкие интересы (Разнообразие интересов при наличии основного, центрального интереса.);

­ узкие интересы (Наличие одного-двух ограниченных и изолированных интересов при полном равнодушии ко всему остальному.);

­ глубокие интересы (Потребность основательно изучить объект во всех деталях и тонкостях.);

­ поверхностные интересы (Скольжение по поверхности явления и нет интереса к объекту по-настоящему.);

· по силе:

­ устойчивые интересы (Длительно сохраняются, играют существенную роль в жизни и деятельности человека и являются относительно закрепленными особенностями его личности.);

­ неустойчивые интересы (Сравнительно кратковременны: быстро возникают и быстро угасают.);

· по опосредованности:

­ прямые (непосредственные) интересы (Вызываются самим содержанием той или иной области знаний или деятельности, ее занимательностью и увлекательностью.);

­ косвенные (опосредованные) интересы (Вызываются не содержанием объекта, а тем значением, которое он имеет, будучи связанным с другим объектом, непосредственно интересующим человека.);

· по уровню действенности:

­ пассивные интересы;

­ созерцательные интересы (Когда человек ограничивается восприятием интересующего объекта.);

­ активные интересы;

­ действенный интерес (Когда человек не ограничивается созерцанием, а действует с целью овладения объектом интереса.) (Г. И. Щукина, 1988).

Существует особый вид интересов человека - познавательный интерес.

«Познавательный интерес - это избирательная направленность личности, обращенная к области познания, к ее предметной стороне и самому процессу овладения знаниями» .

Познавательный интерес может быть широким, распространяющимся на получение информации вообще, и углубленным в определенную область познания. Он направлен на овладение знаниями, которые представлены в школьных предметах. При этом он обращен не только к содержанию данного предмета, но и к процессу добывания этих знаний, к познавательной деятельности. математический педагогический учащийся

В педагогике наряду с термином «познавательный интерес» употребляется термин «учебный интерес». Понятие «познавательный интерес» более широкое, так как в зоне познавательного интереса находятся не только знания, ограниченные учебными программами, но и выходящие далеко за ее пределы.

В зарубежной литературе термин «познавательный интерес» отсутствует, но существует понятие «интеллектуальный интерес». Этот термин тоже не включает всего того, что входит в понятие «познавательный интерес», так как познание включает в себя не только интеллектуальные процессы, но и элементы практических действий, связанных с познанием.

Познавательный интерес это соединение психических процессов: интеллектуального, волевого и эмоционального. Они очень важны для развития личности.

В интеллектуальной деятельности, протекающей под влиянием познавательного интереса, проявляются:

· активный поиск;

· догадка;

· исследовательский подход;

· готовность к решению задач.

Эмоциональные проявления, сопровождающие познавательный интерес:

· эмоции удивления;

· чувство ожидания нового;

· чувство интеллектуальной радости;

· чувство успеха.

Характерными для познавательного интереса волевыми проявлениями считаются:

· инициатива поиска;

· самостоятельность добывания знаний;

· выдвижение и постановка познавательных задач.

Итак, интеллектуальная, волевая и эмоциональная стороны познавательного интереса выступают как единое взаимосвязанное целое.

Своеобразие познавательного интереса выражается в углубленном изучении, в постоянном и самостоятельном добывании знаний в интересующей области, в активном приобретении необходимых для этого способов, в настойчивом преодолении трудностей, лежащих на пути овладения знаниями и способами их получения.

Психологи и педагоги выделяют три основных мотива, побуждающих школьников учиться:

· Интерес к предмету (Я изучаю математику не потому, что преследую какую-то цель, а потому, что сам процесс изучения доставляет мне удовольствие). Высшая степень интереса - это увлечение. Занятия при увлечении порождают сильные положительные эмоции, а невозможность заниматься воспринимается как лишение.

· Сознательность. (Занятия по данному предмету мне не интересны, но я осознаю их необходимость и усилием воли заставляю себя заниматься).

· Принуждение. (Я занимаюсь потому, что меня заставляют родители, учителя). Часто принуждение поддерживается страхом наказания или соблазном награды. Различные меры принуждения в большинстве случаев не дают положительных результатов (25, с. 24).

Интерес в высокой степени повышает эффективность уроков. Если ученики занимаются в силу своего внутреннего влечения, по собственному желанию, то учебный материал они усваивают достаточно легко и основательно, в силу этого имеют хорошие оценки по предмету. У большинства неуспевающих учеников обнаруживается отрицательное отношение к учению. Таким образом, чем выше интерес учащегося к предмету, тем активнее идет обучение и тем лучше его результаты. Чем ниже интерес, тем формальнее обучение, хуже его результаты. Отсутствие интереса приводит к низкому качеству обучения, быстрому забыванию и даже к полной потере приобретенных знаний, умений и навыков.

Формируя познавательные интересы у учащихся, надо иметь в виду, что они не могут охватывать всех учебных предметов. Интересы носят избирательный характер, и один ученик, как правило, может заниматься с настоящим увлечением лишь по одному-двум предметам. Но, наличие устойчивого интереса к тому или иному предмету положительно сказывается на учебной работе по другим предметам, тут имеют значение как интеллектуальные, так и моральные факторы. Интенсивное умственное развитие, связанное с углубленным изучением одного предмета, облегчает и делает более эффективным учение школьника по другим предметам. С другой стороны, достигаемые успехи в учебной работе по любимым предметам укрепляют чувство собственного достоинства ученика, и он стремится прилежно заниматься вообще.

Важной задачей учителя является формирование у школьников первых двух мотивов учения - интереса к предмету и чувства долга, ответственности в учебе. Их сочетание позволит ученику достигнуть хороших результатов в учебной деятельности.

Формирование познавательных интересов начинается задолго до школы, в семье, их возникновение связывают с появлением у детей таких вопросов, как «Почему?», «Отчего?», «Зачем?». Интерес выступает первоначально в форме любопытства. К концу дошкольного возраста под влиянием старших у ребенка формируется интерес к учению в школе: он не только играет в школу, но и делает успешные попытки овладеть чтением, письмом, счетом и т.п.

В начальной школе познавательные интересы углубляются. Формируется сознание жизненной значимости учения. С течением времени познавательные интересы дифференцируются: одним больше нравится математика, другим чтение и т.п. Большой интерес проявляется у детей к процессу труда, особенно если он совершается в коллективе. Учение и другие виды познания вступают в конфликт, так как новые интересы школьников недостаточно удовлетворяется в школе. Разбросанность и неустойчивость интересов подростков объясняется и тем, что они «нащупывают» свой основной, центральный, стержневой интерес как основу жизненной направленности и пробуют себя в разных областях. Когда интересы и склонности подростков, наконец-то, определяются, то у них начинают формироваться и ярко проявляться способности. К концу подросткового возраста начинают формироваться интересы к определенной профессии. В старшем школьном возрасте развитие познавательных интересов, рост сознательного отношения к учению определяют дальнейшее развитие произвольности познавательных процессов, умения управлять ими, сознательно регулировать их. В конце старшего возраста учащиеся овладевают своими познавательными процессами, подчиняют их организацию определенным задачам жизни и деятельности.

Одним из средств развития интереса к математике являются нестандартные задачи. Остановимся на них подробнее.

1.2

Нестандартные задачи и их виды

Понятие «нестандартная задача» используется многими методистами. Так, Ю. М. Колягин раскрывает это понятие следующим образом: «Под нестандартной понимается задача, при предъявлении которой учащиеся не знают заранее ни способа ее решения, ни того, на какой учебный материал опирается решение» .

Определение нестандартной задачи приведено также в книге «Как научиться решать задачи» авторов Л.М. Фридмана, Е.Н. Турецкого: «Нестандартные задачи - это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения» .

Не следует путать нестандартные задачи с задачами повышенной сложности. Условия задач повышенной сложности таковы, что позволяют ученикам довольно легко выделить тот математический аппарат, который нужен для решения задачи по математике. Учитель контролирует процесс закрепления знаний, предусмотренных программой обучения решением задач этого типа. А вот нестандартная задача предполагает наличие исследовательского характера. Однако если решение задачи по математике для одного учащегося является нестандартным, поскольку он незнаком с методами решения задач данного вида, то для другого - решение задачи происходит стандартным образом, так как он уже решал такие задачи и не одну. Одна и та же задача по математике в 5 классе нестандартна, а в 6 классе она является обычной, и даже не повышенной сложности.

Анализ учебников и учебных пособий по математике показывает, что каждая текстовая задача в определенных условиях может быть нестандартной, а в других - обычной, стандартной. Стандартная задача одного курса математики может быть нестандартной в другом курсе.

Опираясь на анализ теории и практики использования нестандартных задач в обучении математике, можно установить их общую и специфическую роль. Нестандартные задачи:

· учат детей использовать не только готовые алгоритмы, но и самостоятельно находить новые способы решения задач, т.е. способствуют умению находить оригинальные способы решения задач;

· оказывают влияние на развитие смекалки, сообразительности учащихся;

· препятствуют выработке вредных штампов при решении задач, разрушают неправильные ассоциации в знаниях и умениях учащихся, предполагают не столько усвоение алгоритмических приемов, сколько нахождение новых связей в знаниях, к переносу знаний в новые условия, к овладению разнообразными приемами умственной деятельности;

· создают благоприятные условия для повышения прочности и глубины знаний учащихся, обеспечивают сознательное усвоение математических понятий.

Нестандартные задачи:

· не должны иметь уже готовых, заученных детьми алгоритмов;

· должны быть доступны по содержанию всем учащимся;

· должны быть интересными по содержанию;

· для решения нестандартных задач учащимся должно хватать знаний, усвоенных ими по программе.

Решение нестандартных задач активизирует деятельность учащихся. Учащиеся учатся сравнивать, классифицировать, обобщать, анализировать, а это способствует более прочному и сознательному усвоению знаний.

Как показала практика, нестандартные задачи весьма полезны не только для уроков, но и для внеклассных занятий, для олимпиадных заданий, так как при этом открывается возможность по-настоящему дифференцировать результаты каждого участника. Такие задачи могут с успехом использоваться и в качестве индивидуальных заданий для тех учеников, которые легко и быстро справляются с основной частью самостоятельной работы на уроке, или для желающих в качестве дополнительных заданий. В результате учащиеся получают интеллектуальное развитие и подготовку к активной практической деятельности.

Общепринятой классификации нестандартных задач нет, но Б.А. Кордемский выделяет следующие виды таких задач:

· Задачи, примыкающие к школьному курсу математики, но повышенной трудности - типа задач математических олимпиад. Предназначаются в основном для школьников с определившимся интересом к математике; тематически эти задачи обычно связаны с тем или иным определённым разделом школьной программы. Относящиеся сюда упражнения углубляют учебный материал, дополняют и обобщают отдельные положения школьного курса, расширяют математический кругозор, развивают навыки в решении трудных задач.

· Задачи типа математических развлечений. Прямого отношения к школьной программе не имеют и, как правило, не предполагают большой математической подготовки. Это не значит, однако, что во вторую категорию задач входят только лёгкие упражнения. Здесь есть задачи с очень трудным решением и такие задачи, решение которых до сих пор не получено. «Нестандартные задачи, поданные в увлекательной форме, вносят эмоциональный момент в умственные занятия. Не связанные с необходимостью всякий раз применять для их решения заученные правила и приёмы, они требуют мобилизации всех накопленных знаний, приучают к поискам своеобразных, не шаблонных способов решения, обогащают искусство решения красивыми примерами, заставляют восхищаться силой разума» .

К этому виду задач относятся:

­ разнообразные числовые ребусы («… примеры, в которых все или некоторые цифры заменены звездочками или буквами. Одинаковые буквы заменяют одинаковые цифры, разные буквы - разные цифры» .) и головоломки на смекалку;

­ логические задачи, решение которых не требует вычислений, но основывается на построении цепочки точных рассуждений;

­ задачи, решение которых основывается на соединении математического развития и практической смекалки: взвешивание и переливания при затруднительных условиях;

­ математические софизмы - это умышленное, ложное умозаключение, которое имеет видимость правильного. (Софизм - доказательство ложного утверждения, причём ошибка в доказательстве искусно замаскирована. Софизм в переводе с греческого означает хитроумную выдумку, ухищрение, головоломку);

­ задачи-шутки;

­ комбинаторные задачи, в которых рассматриваются различные комбинации из заданных объектов, удовлетворяющие определённым условиям (Б.А. Кордемский, 1958).

Не менее интересна классификация нестандартных задач, приведённая И.В. Егорченко:

· задачи, направленные на поиск взаимосвязей между заданными объектами, процессами или явлениями;

· задачи, неразрешимые или не решаемые средствами школьного курса на данном уровне знаний учащихся;

· задачи, в которых необходимо:

­ проведение и использование аналогий, определение различий заданных объектов, процессов или явлений, установление противоположности заданных явлений и процессов или их антиподов;

­ осуществление практической демонстрации, абстрагирование от тех или иных свойств объекта, процесса, явления или конкретизации той или иной стороны данного явления;

­ установка причинно-следственных отношений между заданными объектами, процессами или явлениями;

­ построение аналитическим или синтетическим путем причинно-следственных цепочек с последующим анализом получившихся вариантов;

­ правильное осуществление последовательности определенных действий, избегая ошибок-«ловушек»;

­ осуществление перехода от плоскостного к пространственному варианту заданного процесса, объекта, явления или наоборот (И.В. Егорченко, 2003).

Итак, единой классификации нестандартных задач нет. Их существует несколько, но автор работы использовал в исследовании классификацию, предложенную И.В. Егорченко.

1.3 Методы решения нестандартных задач

Русский филолог Дмитрий Николаевич Ушаков в своём толковом словаре даёт такое определение понятия «метод» - путь, способ, прием теоретического исследования или практического осуществления чего-нибудь (Д. Н. Ушаков, 2000).

Каковы же методы обучения решению задач по математике, которые мы считаем на данный момент нестандартными? Универсального рецепта, к сожалению, никто не придумал, учитывая уникальность данных задач. Некоторые учителя натаскивают в шаблонных упражнениях. Происходит это следующим образом: учитель показывает способ решения, а затем ученик повторяет это при решении задач многократно. При этом убивается интерес учащихся к математике, что, по меньшей мере, печально.

В математике нет каких-либо общих правил, позволяющих решить любую нестандартную задачу, так как такие задачи в какой-то степени неповторимы. Нестандартная задача в большинстве случаев воспринимается как «вызов интеллекту, и порождает потребность реализовать себя в преодолении препятствия, в развитии творческих способностей» .

Рассмотрим, несколько методов решения нестандартных задач:

· алгебраический;

· арифметический;

· метод перебора;

· метод рассуждения;

· практический;

· метод предположения.

Алгебраический метод

решения задач развивает творческие способности, способность к обобщению, формирует абстрактное мышление и обладает такими преимуществами, как краткость записи и рассуждений при составлении уравнений, экономит время.

Для того чтобы решить задачу алгебраическим методом необходимо:

· провести разбор задачи с целью выбора основного неизвестного и выявления зависимости между величинами, а также выражения этих зависимостей на математическом языке в форме двух алгебраических выражений;

· найти основание для соединения этих выражений знаком «=» и составить уравнение;

· найти решения полученного уравнения, организовать проверку решения уравнения.

Все эти этапы решения задачи логически связаны между собой. Например, о поисках основания для соединения двух алгебраических выражений знаком равенства мы упоминаем как об особом этапе, но ясно, что на предыдущем этапе указанные выражения образуются не произвольно, а с учётом возможности соединить их знаком «=».

Как выявление зависимостей между величинами, так и перевод этих зависимостей на математический язык требует напряжённой аналитико-синтетической мыслительной деятельности. Успех в этой деятельности зависит, в частности от того, знают ли учащиеся, в каких отношениях вообще могут находиться эти величины, и понимают ли они реальный смысл этих отношений (например, отношений, выраженных терминами «позже на…», «старше в…раз» и т.п.). Далее требуется понимание, каким именно математическим действием или, свойством действия или какой связью (зависимостью) между компонентами и результатом действия может быть описано то или иное конкретное отношение.

Приведём пример решения нестандартной задачи алгебраическим методом.

Задача. Рыбак поймал рыбу. Когда у него спросили: «Какова её масса?», он ответил: «Масса хвоста - 1кг, масса головы такая же, как масса хвоста и половины туловища. А масса туловища такая, как масса головы и хвоста вместе». Какова масса рыбы?

Пусть х кг - масса туловища; тогда (1+1/2х) кг - масса головы. Так как по условию масса туловища равна сумме масс головы и хвоста, составляем и решаем уравнение:

х = 1 + 1/2х + 1,

4 кг - масса туловища, тогда 1+1/2 4=3 (кг) - масса головы и 3+4+1=8 (кг) - масса всей рыбы;

Ответ: 8 кг.

Арифметический метод

решения также требует большого умственного напряжения, что положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную жизненную ситуацию.

Рассмотрим пример решения нестандартной задачи арифметическим методом:

Задача. У двух рыбаков спросили: «Сколько рыбы в ваших корзинах?»

«В моей корзине половина того, что в корзине у него, да ещё 10», - ответил первый. «А у меня в корзине столько, сколько у него, да ещё 20», - подсчитал второй. Мы сосчитали, а теперь посчитайте вы.

Построим схему к задаче. Обозначим первым отрезком схемы количество рыбы у первого рыбака. Вторым отрезком обозначим количество рыбы у второго рыбака.

В связи с тем, что современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике, в школьный курс математики вводят элементы комбинаторики, теории вероятностей и математической статистики, в которых удобно разбираться при помощи метода перебора.

Включение комбинаторных задач в курс математики оказывает положительное влияние на развитие школьников. «Целенаправленное обучение решению комбинаторных задач способствует развитию такого качества математического мышления, как вариативность. Под вариативностью мышления мы понимаем направленность мыслительной деятельности ученика на поиск различных решений задачи в случае, когда нет специальных указаний на это» .

Комбинаторные задачи можно решать различными методами. Условно эти методы можно разделить на «формальные» и «неформальные». При «формальном» методе решения нужно определить характер выбора, выбрать соответствующую формулу или комбинаторное правило (существуют правила суммы и произведения), подставить числа и вычислить результат. Результат - это количество возможных вариантов, сами же варианты в этом случае не образовываются.

При «неформальном» же методе решения на первый план выходит сам процесс составления различных вариантов. И главное уже не сколько, а какие варианты могут получиться. К таким методам относится метод перебора.Этот метод доступен даже младшим школьникам, и позволяет накапливать опыт практического решения комбинаторных задач, что служит основой для введения в дальнейшем комбинаторных принципов и формул. Кроме того, в жизни человеку приходится не только определять число возможных вариантов, но и непосредственно составлять все эти варианты, а, владея приёмами систематического перебора, это можно сделать более рационально.

Задачи по сложности осуществления перебора делятся на три группы:

1 . Задачи, в которых нужно произвести полный перебор всех возможных вариантов.

2. Задачи, в которых использовать приём полного перебора нецелесообразно и нужно сразу исключить некоторые варианты, не рассматривая их (то есть осуществить сокращённый перебор).

3. Задачи, в которых операция перебора производится несколько раз и по отношению к разного рода объектам.

Приведём соответствующие примеры задач:

Задача. Расставляя знаки «+» и «-» между данными числами 9…2…4, составь все возможные выражения.

Проводится полный перебор вариантов:

а) два знака в выражении могут быть одинаковыми, тогда получаем:

9 + 2 + 4 или 9 - 2 - 4;

б) два знака могут быть разными, тогда получаем:

9 + 2 - 4 или 9 - 2 + 4.

Задача. Учитель говорит, что он нарисовал в ряд 4 фигуры: большой и маленький квадраты, большой и маленький круги так, что на первом месте находится круг и одинаковые по форме фигуры не стоят рядом, и предлагает ученикам отгадать, в какой последовательности расставлены эти фигуры.

Всего существует 24 различных расположения этих фигур. И составлять их все, а потом выбирать соответствующие данному условию нецелесообразно, поэтому проводится сокращённый перебор.

На первом месте может стоять большой круг, тогда маленький может быть только на третьем месте, при этом большой и маленький квадраты можно поставить двумя способами - на второе и четвёртое место.

Аналогичное рассуждение проводится, если на первом месте стоит маленький круг, и также составляются два варианта.

Задача. Три компаньона одной фирмы хранят ценные бумаги в сейфе, на котором 3 замка. Компаньоны хотят распределить между собой ключи от замков так, чтобы сейф мог открываться только в присутствии хотя бы двух компаньонов, но не одного. Как это можно сделать?

Сначала перебираются все возможные случаи распределения ключей. Каждому компаньону можно дать по одному ключу или по два разных ключа, или по три.

Предположим, что у каждого компаньона по три разных ключа. Тогда сейф сможет открыть один компаньон, а это не соответствует условию.

Предположим, что у каждого компаньона по одному ключу. Тогда, если придут двое из них, то они не смогут открыть сейф.

Дадим каждому компаньону по два разных ключа. Первому - 1 и 2 ключи, второму - 1 и 3 ключи, третьему - 2 и 3 ключи. Проверим, когда придут любые два компаньона, смогут ли они открыть сейф.

Могут прийти первый и второй компаньоны, у них будут все ключи (1 и 2, 1 и 3). Могут прийти первый и третий компаньоны, у них также будут все ключи (1 и 2, 2 и 3). Наконец, могут прийти второй и третий компаньоны, у них тоже будут все ключи (1 и 3, 2 и 3).

Таким образом, чтобы найти ответ в этой задаче, нужно выполнить операцию перебора несколько раз.

При отборе комбинаторных задач нужно обращать внимание на тематику и форму представления этих задач. Желательно, чтобы задачи не выглядели искусственным, а были понятны и интересны детям, вызывали у них положительные эмоции. Можно для составления задач использовать практический материал из жизни.

Встречаются и другие задачи, которые можно решить методом перебора.

В качестве примера решим задачу: «Маркизу Карабасу было 31 год, а его молодому энергичному Коту в Сапогах 3 года, когда произошли известные по сказке события. Сколько лет произошло с тех пор, если сейчас Кот в три раза младше своего хозяина?» Перебор вариантов представим таблицей.

Возраст Маркиза Карабаса и Кота в Сапогах

14 - 3 = 11 (лет)

Ответ: 11 лет прошло.

При этом ученик как бы экспериментирует, наблюдает, сопоставляет факты и на основании частных выводов делает те или иные общие заключения. В процессе этих наблюдений обогащается его реально-практический опыт. Именно в этом и состоит практическая ценность задач на перебор. При этом слово «перебор» используется в смысле разбора всех возможных случаев, которые удовлетворяют условиям задачи, показав, что других решений быть не может.

Эту задачу можно решить и алгебраическим методом.

Пусть Коту х лет, тогда Маркизу 3х, исходя из условия задачи, составим уравнение:

Коту сейчас 14 лет, тогда прошло 14 - 3 = 11(лет).

Ответ: 11 лет прошло.

Метод рассуждений

можно использовать для решения математических софизмов.

Ошибки, допущенные в софизме, обычно сводятся к следующим: выполнению «запрещённых» действий, использованию ошибочных чертежей, неверному словоупотреблению, неточности формулировок, «незаконным» обобщениям, неправильным применениям теорем.

Раскрыть софизм - это, значит, указать ошибку в рассуждении, основываясь на которой была создана внешняя видимость доказательства.

Разбор софизмов, прежде всего, развивает логическое мышление, прививает навыки правильного мышления. Обнаружить ошибку в софизме - это, значит, осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях. Помимо критичности математического мышления этот вид нестандартных задач выявляет гибкость мышления. Сумеет ли ученик «вырваться из тисков» этого строго логичного на первый взгляд пути, разорвать цепь умозаключений в том самом звене, которое является ошибочным и делает ошибочным все дальнейшие рассуждения?

Разбор софизмов помогает также сознательному усвоению изучаемого материала, развивает наблюдательность и критическое отношение к тому, что изучается.

а) Вот, к примеру, софизм с неправильным применением теоремы.

Докажем, что 2 2 = 5.

Возьмём в качестве исходного соотношения следующее очевидное равенство: 4: 4 = 5: 5 (1)

Вынесем за скобки общий множитель в левой и правой частях, получим:

4 (1: 1) = 5 (1: 1) (2)

Числа в скобках равны, значит, 4 = 5 или 2 2 = 5.

В рассуждении при переходе от равенства (1) к равенству (2) создана иллюзия правдоподобия на основе ложной аналогии с распределительным свойством умножения относительно сложения.

б) Софизм с использованием «незаконных» обобщений.

Имеются две семьи - Ивановых и Петровых. Каждая состоит из 3 человек - отца, матери и сына. Отец Иванов не знает отца Петрова. Мать Иванова не знает матери Петровой. Единственный сын Ивановых не знает единственного сына Петровых. Вывод: ни один член семьи Ивановых не знает ни одного члена семьи Петровых. Верно ли это?

Если член семьи Ивановых не знает равного себе по семейному статусу члена семьи Петровых, то это не значит, что он не знает всю семью. Например, отец Иванов может знать мать и сына Петровых.

Метод рассуждений можно использовать и для решения логических задач. Подлогическими задачами обычно понимаюттакие задачи, которые решаются с помощью одних лишь логических операций. Иногда решение их требует длительных рассуждений, необходимое направление которых заранее нельзя предугадать.

Задача. Говорят, что Тортила отдала золотой ключик Буратино не так просто, как рассказал А. Н. Толстой, а совсем иначе. Она вынесла три коробочки: красную, синюю и зелёную. На красной коробочке было написано: «Здесь лежит золотой ключик», а на синей - «Зелёная коробочка пуста», а на зелёной - «Здесь сидит змея». Тортила прочла надписи и сказала: «Действительно в одной коробочке лежит золотой ключик, в другой - змея, а третья - пуста, но все надписи неверны. Если отгадаешь, в какой коробочке лежит золотой ключик, он твой». Где лежит золотой ключик?

Так как все надписи на коробочках неверны, то в красной коробочке лежит не золотой ключик, зеленая коробочка не пустая и в ней не змея, значит в зеленой коробочке - ключик, в красной - змея, а синяя - пуста.

При решении логических задач активизируется логическое мышление, а это умение выводить следствия из посылок, которое крайне необходимо для успешного овладения математикой.

Ребус - это загадка, но загадка не совсем обычная. Слова и числа в математических ребусах изображены при помощи рисунков, звездочек, цифр и различных знаков. Чтобы прочесть то, что зашифровано в ребусе, надо правильно назвать все изображенные предметы и понять, какой знак что изображает. Ребусами люди пользовались еще тогда, когда не умели писать. Свои письма они составляли из предметов. Например, вожди одного племени послали однажды своим соседям вместо письма птицу, мышь, лягушку и пять стрел. Это означало: «Умеете ли летать как птицы и прятаться в земле как мыши, прыгать по болотам как лягушки? Если не умеете, то не пробуйте воевать с нами. Мы засыпим вас стрелами, как только вы вступите в нашу страну».

Судя по первой букве суммы 1), Д = 1 или 2.

Предположим, что Д = 1. Тогда, У? 5. У = 5 исключаем, т.к. Р не может быть равно 0. У? 6, т.к. 6 + 6 = 12, т.е. Р = 2. Но такое значение Р при дальнейшей проверке не подходит. Аналогично, У? 7.

Предположим, что У = 8. Тогда, Р = 6, А = 2, К = 5, Д = 1.

Магический (волшебный) квадрат - это квадрат, в котором сумма чисел по вертикали, горизонтали и диагонали получается одинаковой.

Задача. Расположите числа от 1 до 9 так, чтобы по вертикали, горизонтали и диагонали получилась одинаковая сумма чисел, равная 15.

Хотя общих правил для решения нестандартных задач нет (поэтому эти задачи и называются нестандартными), однако мы постарались дать ряд общих указаний - рекомендаций, которыми следует руководствоваться при решении нестандартных задач разных видов.

Каждая нестандартная задача оригинальна и неповторима в своём решении. В связи с этим разработанная методика обучения поисковой деятельности при решении нестандартных задач не формирует навыки решения нестандартных задач, речь может идти лишь об отработке определённых умений:

· умения понимать задачу, выделять главные (опорные) слова;

· умения выявлять условие и вопрос, известное и неизвестное в задаче;

· умения находить связь между данным и искомым, то есть проводить анализ текста задачи, результатом которого является выбор арифметического действия или логической операции для решения нестандартной задачи;

· умения записывать ход решения и ответ задачи;

· умения проводить дополнительную работу над задачей;

· умение отбирать полезную информацию, содержащуюся в самой задаче, в процессе её решения, систематизировать эту информацию, соотнося с уже имеющимися знаниями.

Нестандартные задачи развивают пространственное мышление, которое выражается в способности воссоздавать в уме пространственные образы объектов и выполнять над ними операции. Пространственное мышление проявляется при решении задач типа: «Сверху на кромке круглого торта поставили 5 точек из крема на одинаковом расстоянии друг от друга. Через все пары точек сделали разрезы. Сколько всего получилось кусочков торта?»

Практический метод

можно рассмотреть для нестандартных задач на деление.

Задача. Палку нужно распилить на 6 частей. Сколько потребуется распилов?

Решение: Распилов потребуется 5.

При изучении нестандартных задач на деление надо понять: чтобы разрезать отрезок на Р частей, следует сделать (Р - 1) разрез. Этот факт нужно установить с детьми индуктивным путём, а затем использовать при решении задач.

Задача. В трёхметровом бруске - 300 см. Его надо разрезать на бруски длиной 50 см каждый. Сколько надо сделать разрезов?

Решение: Получаем 6 брусков 300: 50 = 6 (брусков)

Рассуждаем так: чтобы разделить брусок пополам, т. е. на две части, надо сделать 1 разрез, на 3 части - 2 разреза и так далее, на 6 частей - 5 разрезов.

Итак, надо сделать 6 - 1 = 5 (разрезов).

Ответ: 5 разрезов.

Итак, одним из основных мотивов, побуждающих школьников учиться, является интерес к предмету. Интерес - это активная познавательная направленность человека на тот или иной предмет, явление и деятельность, созданная с положительным эмоциональным отношением к ним. Одним из средств развития интереса к математике являются нестандартные задачи. Под нестандартной задачей понимают такие задачи, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения. Решение таких задач позволяет учащимся активно включиться в учебную деятельность. Существуют различные классификации задач и методов их решения. Самыми часто используемыми являются алгебраический, арифметический, практический методы и метод перебора, рассуждения и предположения.

2.Формированиеу школьниковумений решать нестандартные задачи

2.1Нестандартные задания для учащихся начальной школы

Дидактический материал предназначен для учащихся и учителей начальной школы. Он содержит нестандартные математические задачи, которые могут быть использованы на уроках и во внеурочной деятельности. Задачи структурированы по методам решения: арифметический, практический методы, метод перебора, рассуждения и предположения. Задачи представлены разных типов: математические развлечения; разнообразные числовые ребусы; логические задачи; задачи, решение которых основывается на соединении математического развития и практической смекалки: взвешивание и переливания при затруднительных условиях; математические софизмы; задачи-шутки; комбинаторные задачи. Ко всем задачам даны решения и ответы.

· Реши задачи арифметическим методом:

1.Сложили 111 тысяч, 111 сотен и 111 единиц. Что за число получилось?

2.Сколько получится, если сложить числа: наименьшее двузначное, наименьшее трёхзначное, наименьшее четырёхзначное?

3.Задача:

«К серой шапке на урок

Прилетели семь сорок,

А из них лишь 3 сороки

Приготовили уроки.

Сколько лодырей-сорок

Прилетело на урок?»

4.Пете необходимо пройти в 4 раза больше ступенек, чем Коле. Коля живёт на третьем этаже. На каком этаже живёт Петя?

5.По рецепту врача для больного купили в аптеке 10 таблеток. Врач прописал принимать лекарство по 3 таблетки в день. На сколько дней хватит этого лекарства?

· Реши задачи методом перебора:

6.Вставьте вместо звёздочки знаки «+» или «-» так, чтобы получилось верное равенство:

а) 2 * 3 * 1 = 6;

б) 6 * 2 * 3 = 1;

в) 2 * 3 * 1 = 4;

г) 8 * 1 * 4 = 5;

д) 7 * 2 * 4 = 5.

7.Между цифрами отсутствуют знаки «+» и «-». Необходимо как можно быстрее расставить знаки таким образом, чтобы получилось 12.

а) 2 6 3 4 5 8 = 12;

б) 9 8 1 3 5 2 = 12;

в) 8 6 1 7 9 5 = 12;

г) 3 2 1 4 5 3 = 12;

д) 7 9 8 4 3 5 = 12.

8.Оле на день рождения подарили 4 книги со сказками и стихами. Книг со сказками было больше, чем книг со стихами. Сколько книг со сказками подарили Оле?

9.Ваня и Вася решили на все свои деньги купить леденцов. Да вот незадача: денег у них было на 3 кг леденцов, а у продавца были только гири 5 кг и 2 кг. Но у Вани и Васи по математике «5», и они сумели купить то, что хотели. Как они это сделали?

10.Три подружки - Вера, Оля и Таня - пошли в лес по ягоды. Для сбора ягод у них были корзиночка, лукошко и ведёрко. Известно, что Оля была не с корзинкой и не с лукошком, Вера - не с лукошком. Что с собой взяла каждая из девочек для сбора ягод?

11.В соревнованиях по гимнастике Заяц, Мартышка, Удав и Попугай заняли первые 4 места. Определите, кто какое место занял, если известно, что Заяц - 2, Попугай не стал победителем, но в призёры попал, а Удав уступил Мартышке.

12.В бутылке, стакане, кувшине и банке налито молоко, лимонад, квас и вода. Известно, что вода и молоко не в бутылке, в банке - не лимонад и не вода, а сосуд с лимонадом стоит между кувшином и сосудом с квасом. Стакан стоит около банки и сосудом с молоком. Определите, где какая жидкость.

13.На новогоднем утреннике три подруги, Аня, Вера и Даша, были активными участницами, одна из них была Снегурочкой. Когда их подруги спросили, кто же из них был Снегурочкой, то Аня им сказала: «На ваш вопрос каждая из нас даст свой ответ. По этим ответам вы должны догадаться сами, кто из нас в действительности был Снегурочкой. Но знайте, что Даша всегда говорит правду». - «Хорошо, - ответили подруги, - послушаем ваши ответы. Это даже интересно».

Аня: «Снегурочкой была я».

Вера: «Я не была Снегурочкой».

Даша: «Одна из них говорит правду, а другая неправду».

Так кто же из подруг на новогоднем утреннике был Снегурочкой?

14.Лестница состоит из 9 ступенек. На какую ступеньку надо встать, чтобы оказаться как раз на середине лестницы?

15.Какая ступенька будет средней у лестницы в 12 ступеней?

16.Аня сказала своему брату: «Я старше тебя на 3 года. На сколько лет я буду старше тебя через 5 лет?»

17.Раздели прямой линией циферблат часов на две части так, чтобы суммы чисел в этих частях были равными.

18.Раздели циферблат часов двумя прямыми линиями на три части так, чтобы, сложив числа, в каждой части получились одинаковые суммы.

· Реши задачи практическим методом:

19.Веревку разрезали в 6 местах. Сколько частей получилось?

20.Шли 5 братьев. У каждого брата по одной сестре. Сколько всего шло человек?

21.Что тяжелее: килограмм ваты или полкилограмма железа?

22.Петух, стоя на одной ноге, весит 3 кг. Сколько будет весить петух, стоя на двух ногах?

· Реши задачи методом предположения:

23.Как записать число 10 пятью одинаковыми числами, соединив их знаками действий?

24.Как записать число 10 четырьмя различными числами, соединив их знаками действий?

25.Как число 5 можно записать тремя одинаковыми числами, соединив их знаками действий?

26.Как число 1 можно записать тремя различными числами, соединив их знаками действий?

27.Как с помощью шестилитрового и четырёхлитрового сосудов набрать из-под крана 2 литра воды?

28.Семилитровый сосуд заполнен водой. Рядом стоит пятилитровый сосуд, и в нём уже есть 4 л воды. Сколько литров воды надо перелить из большего сосуда в меньший, чтобы он заполнился доверху? Сколько литров воды останется после этого в большем сосуде?

29.Слонёнок заболел. Для его лечения требуется ровно 2 л апельсинового сока, а у доктора Айболита есть только полная пятилитровая банка с соком и пустая трёхлитровая банка. Как Айболиту отмерить ровно 2 л сока?

30.С Винни-Пухом, Пятачком и Кроликом произошла невероятная история. Раньше Вини-Пух любил мёд, Кролик - капусту, Пятачок - жёлуди. Но попав в зачарованный лес и проголодавшись, они обнаружили, что их вкусы изменились, но по-прежнему каждый предпочитает что-то одно. Кролик заявил: «Я не ем капусту и жёлуди». Пятачок промолчал, а Вини-Пух заметил: «А я не люблю капусту». Кто что стал любить есть?

Ответы и решения

1.111000 + 11100 + 111 = 122211.

2.10 + 100 + 1000 = 110.

4.Петя живёт на 9 этаже. Коля живёт на третьем этаже. До третьего этажа 2 «пролёта»: от первого до второго, от второго до третьего. Так как Пете нужно пройти в 4 раза больше ступенек, то 2 4 = 8. Значит, Коле нужно пройти 8 «пролётов», а до 9 этажа 8 «пролётов».

5.3+3+3+1=10. На четвёртый день останется только 1 таблетка.

а) 2 + 3 - 1 = 4;

б) 2 + 3 + 1 = 6;

в) 6 - 2 - 3 = 1;

г) 8 + 1 - 4 = 5;

д) 7 + 2 - 4 = 5.

а) 2 + 6 - 3 + 4 - 5 + 8 = 12;

б) 9 + 8 + 1 - 3 - 5 + 2 = 12;

в) 8 - 6 - 1 + 7 + 9 - 5 = 12;

г) 3- 2 - 1 + 4 + 5 + 3 = 12;

д) 7 + 9 + 8 - 4 - 3 - 5 = 12.

8.Число 4 можно представить в виде суммы двух разных слагаемых единственным способом: 4 - 3 + 1. Книг со сказками было больше, значит, их было 3.

9.На одну чашку весов положить гирю в 5 кг, а на другую - леденцы и гирю в 2 кг.

Корзиночка

10.Занесём условие задачи в таблицу, и, где возможно, расставим плюсы и минусы:

Мартышка

Получилось, что Мартышка и Удав на первом и четвёртом месте, но так как по условию Удав уступил Мартышке, то получается, что на первом месте - Мартышка, на втором - Попугай и на четвёртом - Удав.

11.Условия, что вода - не в бутылке, молоко - не в бутылке, лимонад - не в банке, вода - не в банке занесём в таблицу. Из условия, что сосуд с лимонадом стоит между кувшином и сосудом с квасом, делаем вывод, что лимонад - не в кувшине и квас не в кувшине. А так как стакан стоит около банки и сосуда с молоком, то можно сделать вывод, что молоко - не в банке и не в стакане. Расставим «+», в итоге получаем, что молоко находится в кувшине, лимонад - в бутылке, квас - в банке и вода - в стакане.

12.Из утверждения Даши получаем, что среди высказываний Ани и Веры одно истинное, а другое - ложное. Если ложным будет высказывание Веры, то получим, что и Аня, и Вера были Снегурочками, чего быть не может. Значит, ложным должно быть высказывание Ани. В этом случае получаем, что Аня Снегурочкой не была, не была Снегурочкой и Вера. Остаётся, что Снегурочкой была Даша.

При умножении числа 51 на однозначное число вновь получили двузначное число. Это возможно лишь в том случае, если умножили на 1. Значит, второй множитель равен 11.

13.При умножении первого множителя на 2 получается четырёхзначное число, а при умножении на цифру сотен и цифру единиц - трёхзначные числа. Делаем вывод, что второй множитель - 121. Первая цифра первого множителя равна 7, а последняя равна 6. Получаем произведение чисел 746 и 121. 1-я цифра в 1-м множителе равна 7, последняя - 6.

14.На пятую ступеньку.

15.У лестницы в 12 ступеней не будет средней ступени, у неё есть только пара средних ступенек - шестая и седьмая. Решение этой задачи, так же как и предыдущей, можно проверить, выполнив рисунок.

16.На 3 года.

17.Нужно провести линию между числами 3 и 4 и между 10 и 9.

18.11, 12, 1, 2; 9, 10, 3, 4: 5, 6, 7, 8.

19.Получится 7 частей.

20.6 чел. 5 братьев и 1 сестра.

21.Килограмм ваты

22.3 кг.

23.2 + 2 + 2 + 2 + 2 = 10.

24.1 + 2 + 3 + 4 = 10

25.5 + 5 - 5 = 5

26.4 - 2 - 1; 4 - 1 - 2; 5 - 3 - 1; 6 - 4 - 1; 6 - 2 - 3 и т.д.

27.Набрать в шестилитровый, из него вылить воду в четырёхлитровый, останется 2 литра.

28.Надо перелить 1 л воды, при этом в большем сосуде останется 6 л.

29.Перелить 3 л сока в трёхлитровую банку, тогда в большой банке останется 2 л сока.

30.Кролик - мёд, Вини - Пух - жёлуди, Пятачок - капусту.

...

Подобные документы

    Условия формирования познавательных интересов в обучении математике. Внеклассная работа в школе как средство развития познавательного интереса учащихся. Математическая игра - форма внеклассной работы и средство развития познавательного интереса учащихся.

    дипломная работа , добавлен 28.05.2008

    Психолого-педагогические аспекты формирования умений решать текстовые задачи младшими школьниками. Анализ программных требований к формированию умений решать текстовые задачи. Методы, формы, приемы формирования умений. Диагностика уровня сформированности.

    дипломная работа , добавлен 14.07.2013

    Международное исследование образовательных достижений учащихся как измеритель качества математической подготовки школьников. Компетентностный подход как средство повышения качества грамотности. Компетентностно-ориентированные математические задачи.

    дипломная работа , добавлен 24.06.2009

    Психолого-педагогические исследования развития познавательного интереса учащихся. Учебник как основное средство наглядности при обучении русскому языку. Система работы по формированию познавательного интереса учащихся с помощью наглядных пособий.

    дипломная работа , добавлен 18.10.2011

    Основные проблемы формирования математических знаний и умений у учащихся с нарушением слуха во внеклассной работе. Моделирование педагогического процесса по формированию математических знаний и умений у детей с нарушением слуха во внеклассное время.

    курсовая работа , добавлен 14.05.2011

    Опыт коллективного творчества. Внеклассная работа как средство повышения интереса к учебе. Тест на определение уровня творческого потенциала учащихся, умение принимать нестандартные решения. Техническое творчество, порядок и содержания подготовки к уроку.

    реферат , добавлен 08.12.2010

    Изучение технологии укрупнения дидактических единиц (УДЕ), применение которой способствует формированию навыков самостоятельной работы у учащихся, развитию познавательного интереса, способности к усвоению знаний и увеличению объёма изучаемого материала.

    контрольная работа , добавлен 05.02.2011

    Познавательная деятельность учащихся как необходимое условие успешности процесса обучения школьников 8 классов. Средства активизации познавательной деятельности. Исследование влияния нестандартных форм уроков: дидактическая игра, исторические задачи.

    дипломная работа , добавлен 09.08.2008

    Исследование психолого-педагогических особенностей учащихся младшего школьного возраста. Характеристика системы организации внеклассной работы по математике и методики её проведения. Разработка системы кружковых занятий по математике в игровой форме.

    дипломная работа , добавлен 20.05.2012

    Роль и значение нестандартных уроков по математике в формировании познавательного интереса младших школьников. Опытно-экспериментальная работа по формированию познавательного интереса школьников на уроках-экскурсиях по математике в начальной школе.

Лябина Т.И.

Учитель математики высшей категории

МОУ «Мошокская средняя общеобразовательная школа»

Нестандартные задачи как средство развития логического мышления

Какая задача по математике может называться нестандартной? Хорошее определение приведено в книге

Нестандартные задачи – это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения. Не следует путать их с задачами повышенной сложности. Условия задач повышенной сложности таковы, что позволяют ученикам довольно легко выделить тот математический аппарат, который нужен для решения задачи по математике. Учитель контролирует процесс закрепления знаний, предусмотренных программой обучения решением задач этого типа. А вот нестандартная задача предполагает наличие исследовательского характера. Однако если решение задачи по математике для одного учащегося является нестандартным, поскольку он незнаком с методами решения задач данного вида, то для другого – решение задачи происходит стандартным образом, так как он уже решал такие задачи и не одну. Одна и та же задача по математике в 5 классе нестандартна, а в 6 классе она является обычной, и даже не повышенной сложности.

Итак, если решение задачи учащийся не знает, на какой теоретический материал ему опираться, он тоже не знает, то в этом случае задачу по математике можно назвать нестандартной на данный период времени.

Каковы же методы обучения решению задач по математике, которые мы считаем на данный момент нестандартными? Универсального рецепта, к сожалению, никто не придумал, учитывая уникальность данных задач. Некоторые учителя, что называется, натаскивают в шаблонных упражнениях. Происходит это следующим образом: учитель показывает способ решения, а затем ученик повторяет это при решении задач многократно. При этом убивается интерес учащихся к математике, что, по меньшей мере, печально.



Научить ребят решению задач нестандартного вида можно, если вызвать интерес, другими словами, предложить задачи, интересные и содержательные для современного ученика. Или же заменять формулировку вопроса, используя проблемные жизненные ситуации. Например, вместо задания «решить Диафантово уравнение», предложить решить следующую задачу. Может ли

ученик расплатиться за покупку стоимостью 19 р., если у него только трехрублевые купюры, а у продавца – десятирублевые?

Также действенен метод подбора вспомогательных задач. Это средство обучения решению задач говорит об определенном уровне достижения в решении задач. Обычно в таких случаях думающий ученик пытается самостоятельно, без помощи учителя находить вспомогательные задачи или упрощать и видоизменять условия данных задач.

Умение решать нестандартные задачи приобретается практикой. Не зря говорят, что математике нельзя научиться, глядя, как это делает сосед. Самостоятельная работа и помощь учителя – вот залог плодотворной учебы.

1.Нестандартные задачи и их характеристики.

Наблюдения показывают, что математику любят в основном те ученики, которые умеют решать задачи. Следовательно, научив детей владеть умением решать задачи, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Нестандартные задачи способствуют развитию логического мышления в еще большей степени. Кроме того, они являются мощным средством активизациипознавательной деятельности, т. е. вызывают у детей огромный интерес и желание работать. Приведем пример нестандартных задач.

I. Задачи на смекалку.

1. Масса цапли, стоящей на одной ноге 12 кг. Сколько будет весить цапля, если встанет на 2 ноги?

2. Пара лошадей пробежала 40 км. Сколько пробежала каждая лошадь?

3. У семи братьев по одной сестре. Сколько всего детей в семье?

4. Шесть котов за шесть минут съедают шесть мышей. Сколько понадобится котов, чтобы за сто минут съесть сто мышей?

5. Стоят 6 стаканов, 3 с водой, 3 пустых. Как расставить их, чтобы стаканы с водой и пустые чередовались? Разрешается переставить только один стакан.

6. Геологи нашли 7 камней. Масса каждого камня: 1 кг, 2 кг, 3 кг, 4 кг, 5 кг, 6 кг и 7 кг. Эти камни разложили в 4 рюкзака так,

что в каждом рюкзаке масса камней оказалась одинаковой.

Как это сделали?

7. В классе причесанных девочек столько же, сколько непричесанных мальчиков. Кого в классе больше, девочек или непричесанных учеников?

8. Летели утки: одна впереди и две позади, одна позади и две впереди, одна между двумя и три в ряд. Сколько всего летело уток?

9. Миша говорит: «Позавчера мне было10 лет, а в следующем году мне исполнится 13 лет». Возможно ли это?

10. У Андрея и Бори 11 конфет, у Бори и Вовы 13 конфет, а у Андрея и Вовы – 12. Сколько всего конфет у мальчиков?

11.Отец с двумя сыновьями катались на велосипедах: двухколесных и трехколесных. Всего у них было 7 колес. Сколько было велосипедов, и каких?

12. Во дворе куры и поросята. У них у всех 5 голов и 14 ног. Сколько кур и сколько поросят?

13. По двору гуляют куры и кролики. Всего у них 12 ног. Сколько кур и сколько кроликов?

14.У каждого марсианина по 3 руки. Могут ли 13 марсиан взяться за руки так, чтобы не оставалось свободных рук?

15. Играя, каждая из трех девочек – Катя, Галя, Оля – спрятали одну из игрушек – медведя, зайца и слона. Катя не прятала зайца, Оля не прятала ни зайца, ни медведя. Кто какую игрушку спрятал?

II. Занимательные задачи.

1. Как расставить 6 стульев у 4 стен, чтобы у каждой стены было по 2 стула.

2. Папа с двумя сыновьями отправился в поход. На их пути встретилась река. У берега плот. Он выдерживает на воде одного папу или двух сыновей. Как переправиться на другой берег папе с сыновьями?

3. Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы -35кг сена. Сколько сена выдают ежедневно одной лошади и сколько одной корове?

4. Четыре утенка и пять гусят весят 4кг100г, а пять утят и четыре гусенка весят 4кг. Сколько весят один утенок?

5. У мальчика было 22 монеты – пятирублевые и десятирублевые, всего на сумму 150 рублей. Сколько было пятирублевых и десятирублевых монет?

6. В квартире № 1, 2, 3 живут три котенка: белый, черный и рыжий. В квартире № 1 и 2 жил не черный котенок. Белый котенок жил не в квартире № 1. В какой квартире жил каждый из котят?

7.За пять недель пират Ерема способен выпить бочку рома. А у пирата Емели ушло б на это две недели. За сколько дней прикончат ром пираты, действуя вдвоем?

8.Лошадь съедает воз сена за месяц, коза - за два месяца, овца – за три месяца. За какое время лошадь, коза, овца вместе съедят такой же воз сена?

9.Двое очистили 400 картофелин; один очищал 3 штуки в минуту, другой -2. Второй работал на 25 минут больше, чем первый. Сколько времени работал каждый?

10. Среди футбольных мячей красный мяч тяжелее коричневого, а коричневый тяжелее зеленого. Какой мяч тяжелее: зеленый или красный?

11.Три кренделя, пять коврижек и шесть баранок стоят вместе 24 рубля. Что дороже: крендель или баранка?

12. Как тремя взвешиваниями на чашечных весах без гирь найти одну фальшивую (более легкую) монету из 20 монет?

13.Из верхнего угла комнаты вниз по стене поползли две мухи. Спустившись до полу, они поползли обратно. Первая муха ползла в оба конца с одинаковой скоростью, а вторая, хоть и поднималась вдвое медленнее первой, но зато спускалась вдвое быстрее ее. Какая из мух раньше приползет обратно?

14.В клетке находятся фазаны и кролики. У всех животных 35 голов и 94 ноги. Сколько в клетке кроликов и сколько фазанов?

15. Говорят, что на вопрос о том, сколько у него учеников, древнегреческий математик Пифагор ответил так: «Половина моих учеников изучает математику, четвертая часть изучает природу, седьмая часть проводит время в молчаливом размышлении, остальная часть составляют 3 девы» Сколько учеников было у Пифагора?

III. Геометрические задачи.

1. Раздели пирог прямоугольной формы двумя разрезами на части так, чтобы они имели треугольную форму. Сколько получилось частей?

2. Нарисуй фигуру, не отрывая кончика карандаша от бумаги и не проводя дважды один и тот же отрезок.

3.Разрежь квадрат на 4 части и сложи из них 2 квадрата. Как это сделать?

4.Убери 4 палочки так, чтобы осталось 5 квадратов.

5.Разрежьте треугольник на два треугольника, четырехугольник и пятиугольник, проведя две прямые линии.

6.Можно ли квадрат разделить на 5 частей и собрать восьмиугольник?

IV. Логические квадраты.

1. Заполни квадрат (4 х 4) числами 1, 2, 3, 6 так, чтобы сумма чисел по всем строкам, столбцами и диагоналям была одинаковой. Числа в строках, столбцах и диагоналях не должны повторяться.

2. Раскрась квадрат красным, зеленым, желтым и синим цветами так, чтобы цвета в строках, столбцах и по диагоналям не повторялись.

3.В квадрате нужно разместить еще числа 2,2,2,3,3,3 так, чтобы по всем линиям получить в сумме число 6.

5.В клетках квадрата поставить числа 4,6,7,9,10,11,12 так, чтобы в столбцах, в строчках и по диагоналям получить сумму 24.

V. Комбинаторные задачи.

1. У Даши 2 юбки: красная и синяя, и 2 блузки: в полоску и в горошек. Сколько разных нарядов у Даши?

2. Сколько существует двузначных чисел, у которых все цифры нечетные?

3. Родители приобрели путевку в Грецию. До Греции можно добраться, используя один из трех видов транспорта: самолет, теплоход или автобус. Составьте все возможные варианты использования данных видов транспорта.

4. Сколько разных слов можно образовать при помощи букв слова «соединение»?

5. Из цифр 1, 3, 5 составить различные трехзначные числа так, чтобы в числе не было одинаковых цифр.

6. Встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас блондин, другой брюнет, а третий рыжеволосый. Но ни у одного нет волос того цвета, на который указывает его фамилия», - заметил брюнет. «Ты прав», - сказал Белов. Какой цвет волос у художника?

7. Три подруги вышли погулять в белом, зеленом и синем платьях и туфлях таких же цветов. Известно, что только у Ани цвет платья и цвет туфель совпадают. Ни туфли, ни платье Вали не были белыми. Наташа была в зеленых туфлях. Определите цвет платья и туфель на каждой из подруг.

8. В отделении банка работают кассир, контролер и заведующий. Их фамилии Борисов, Иванов и Сидоров. Кассир не имеет ни братьев, ни сестер и меньше всех ростом. Сидоров женат на сестре Борисова и ростом выше контролера. Назовите фамилии контролера и заведующего.

9. Для пикника сладкоежка Маша взяла в трех одинаковых коробках конфеты, печенье и торт. На коробках были этикетки: «Конфеты», «Печенье», и «Торт». Но Маша знала, что мама любит шутить и всегда кладет продукты в

коробки, надписи на которых не соответствуют их содержимому. Маша была уверена, что конфеты не лежат в коробке, на которой написано «Торт». В какой же коробке торт?

10. По кругу сидят Иванов, Петров, Марков, Карпов. Их имена Андрей, Сергей, Тимофей, Алексей. Известно, Иванов не Андрей и не Алексей. Сергей сидит между Марковым и Тимофеем. Петров сидит между Карповым и Андреем. Как зовут Иванова, Петрова, Маркова и Карпова?

VI. Задачи на переливание.

1. Можно ли, имея лишь два сосуда емкостью 3 и 5л, набрать из водопроводного крана 4 л воды?

2. Как разделить поровну между двумя семьями 12 л хлебного кваса, находящегося в двенадцатилитровом сосуде, воспользовавшись для этого двумя пустыми сосудами: восьмилитровым и трехлитровым?

3.Как, имея два сосуда емкостью 9л и 5л, набрать из водоема ровно 3 литра воды?

4.Бидон, емкость которого 10 литров, наполнен соком. Имеются еще пустые сосуды в 7 и 2 литров. Как разлить сок в два сосуда по 5 литров каждый?

5. Имеются два сосуда. Емкость одного из них 9л, а другого 4л. Как с помощью этих сосудов набрать из бака 6 литров некоторой жидкости? (Жидкость можно сливать обратно в бак).

Анализ предложенных текстовых задач показывает, что решение их не укладывается в рамки той или иной системы типовых задач. Такие задачи называют нетиповыми (И. К. Андронов, А. С. Пчелко и др.) или нестандартными (Ю. М. Колягин, К. И. Нешков, Д. Пойа и др.)

Обобщая различные подходы методистов в понимании стандартных и нестандартных задач (Д. Пойа, Я. М. Фридман и др.), под нестандартной задачей понимаем такую задачу, алгоритм которой не знаком учащемуся и в дальнейшем не формируется как программное требование.

Анализ учебников и учебных пособий по математике показывает, что каждая текстовая задача в определенных условиях может быть нестандартной, а в других – обычной, стандартной. Стандартная задача одного курса математики может быть нестандартной в другом курсе.

Например. «На аэродроме было 57 самолетов и 79 вертолетов, 60 машин поднялось в воздух. Можно ли утверждать, что в воздухе находится: а) хотя бы 1 самолет; б) хотя бы 1 вертолет?»

Такие задачи были необязательными для всех учащихся, они предназначались для наиболее способных к математике.

«Если хотите научиться решать задачи, то решайте их!» - советует Д. Пойа.

Главное при этом – сформировать такой общий подход к решению задач, когда задача рассматривается как объект для исследования, а ее решение – как конструирование и изобретение способа решения.

Естественно, что такой подход требует не бездумного решения огромного числа задач, а неторопливого, внимательного и обстоятельного решения значительно меньшего числа задач, но с последующим анализом проведенного решения.

Итак, общих правил решения нестандартных задач нет (поэтому – то эти задачи и называются нестандартными). Однако выдающиеся математики и педагоги (С.А. Яновская, Л.М. Фридман,

Э.Н. Балаян) нашли ряд общих указаний и рекомендаций, которыми можно руководствоваться при решении нестандартных задач. Эти указания обычно называют эвристическими правилами или, просто, эвристиками. Слово «эвристика» греческого происхождения и означает «искусство нахождения истины».

В отличие от математических правил эвристики носят характер необязательных рекомендаций, советов, следование которым может привести (а может и не привести) к решению задачи.

Процесс решения любой нестандартной задачи (по мнению

С.А. Яновской) состоит в последовательном применении двух операций:

1.сведение путем преобразований нестандартной задачи к другой, ей сходной, но уже стандартной задаче;

2. разбиение нестандартной задачи на несколько стандартных подзадач.

Для сведения нестандартной задачи к стандартной не существует определенных правил. Однако если внимательно, вдумчиво анализировать, решать каждую задачу, фиксируя в своей памяти все приемы, с помощью которых были найдены решения, какими методами были решены задачи, то вырабатывается умение в таком сведении.

Рассмотрим на примере задачи:

По тропинке, вдоль кустов, шел десяточек хвостов,

Ну а мой вопрос таков – сколько было петухов?

И узнать я был бы рад - сколько было поросят?

Если не удается решить данную задачу, попытаемся свести ее к сходной.

Переформулируем:

1.Придумаем и решим похожую, но более простую.

2. Используем её решение для решения данной.

Трудность в том, что в задаче два типа зверей. Пусть все будут поросятами, тогда ног будет 40.

Составим похожую задачу:

По тропинке, вдоль кустов, шел десяточек хвостов.

Это вместе шли куда – то петухи и поросята.

Ну а мой вопрос таков - сколько было петухов?

И узнать я был бы рад – сколько было поросят?

Ясно, что если ног в 4 раза больше, чем хвостов, то все животные – поросята.

В похожей задаче взяли 40 ног, а в основной их было 30. Как уменьшить число ног? Заменить поросенка петушком.

Решение основной задачи: если бы все животные были поросятами, то у них было 40 ног. Когда заменяем поросенка петушком, число ног уменьшается на два. Всего надо сделать пять замен, чтобы получить 30 ног. Значит, шагало 5 петушков и 5 поросят.

Как придумать «похожую» задачу?

2 способ решения задачи.

В данной задаче можно применить принцип уравнивания.

Пусть все поросята встанут на задние ноги.

10*2 =20 столько ног шагает по тропинке

30 – 20 =10 столько передних ног у поросят

10:2 = 5 поросенка шло по тропинке

Ну а петушков 10 -5 =5.

Сформулируем несколько правил решения нестандартных задач.

1. «Простое» правило: не пропустите самую простую задачу.

Обычно простую задачу не замечают. А начинать надо именно с неё.

2. «Очередное» правило: условия по возможности надо менять по очереди. Количество условий - конечное число, так что до всех рано или поздно дойдет очередь.

3. «Неизвестное» правило: изменив одно условие, другое, связанное с ним обозначьте х, а потом подберите его так, чтобы вспомогательная задача решалась при данном значении и не решалась при увеличении х на единицу.

3. «Интересное » правило: делайте условия задачи более интересными.

4. «Временное» правило: если в задаче идет какой-то процесс и конечное состояние более определенно, чем начальное, стоит запустить время в обратную сторону: рассмотреть последний шаг процесса, потом предпоследний и т.д.

Рассмотрим применение этих правил.

Задача№1. Пять мальчиков нашли девять грибов. Докажите, что хотя бы двое из них нашли грибов поровну.

1шаг. Мальчиков очень много. Пусть их будет на 2 меньше в следующей задаче.

«Трое мальчиков нашли х грибов. Докажите, что хотя бы двое из них нашли грибов поровну».

Для доказательства установим, при каких х задача имеет решение.

При х=0, х=1, х=2 задача имеет решение, при х=3 задача не имеет решение.

Сформулируем похожую задачу.

Трое мальчиков нашли 2 гриба. Докажите, что хотя бы двое из них нашли грибов поровну.

Пусть все трое мальчиков нашли разное число грибов. Тогда минимальное число грибов равно 3, поскольку 3=0+1+2. Но по условию число грибов меньше 3, поэтому два мальчика из трех нашли одинаковое число грибов.

При решении исходной задачи рассуждения точно такие же. Пусть все, пять мальчиков, нашли разное число грибов. Минимальное число грибов тогда должно равняться 10. (10 =0+1+2+3+4). Но по условию число грибов меньше 10, поэтому двое мальчиков нашли одинаковое число грибов.

При решении использовали «неизвестное» правило.

Задача№2. Над озерами летели лебеди. На каждом садилась половина лебедей и еще пол-лебедя, остальные летели дальше. Все сели на семи озерах. Сколько было лебедей?

1шаг. Идет процесс, начальное состояние не определено, конечное – нулевое, т.е. не стало летящих лебедей.

Запускаем время в обратную сторону, придумав такую задачу:

Над озерами летели лебеди. На каждом взлетало пол-лебедя и еще столько, сколько теперь летело. Все взлетали с семи озер. Сколько было лебедей?

2шаг. Начинаем с нуля:

(((((((0+1/2)2+1/2)2+1/2)2+1/2)2+1/2)2+1/2)2+1/2)2 =127.

Задача №3.

У моста через речку встретились лодырь и черт. Лодырь пожаловался на свою бедность. В ответ черт предложил:

Я могу помочь тебе. Каждый раз, как ты перейдешь этот мост, у тебя деньги удвоятся. Но каждый раз, перейдя мост, ты должен будешь отдать мне 24 копейки. Три раза переходил мост лодырь, а когда заглянул в кошелек, там стало пусто. Сколько денег было у лодыря?

(((0+24):2+24):2+24):2= 21

При решении задач № 2и № 3 использовали «временное» правило.

Задача №4. Кузнец подковывает одно копыто за 15 минут. Сколько времени потребуется 8 кузнецам, чтобы подковать 10 лошадей. (Лошадь не умеет стоять на двух ногах).

1шаг. Лошадей и кузнецов слишком много, уменьшим пропорционально их количество, составив задачу.

Кузнец подковывает одно копыто за пять минут. Сколько времени потребуется четверым кузнецам, чтобы подковать пять лошадей?

Ясно, что минимально возможное время 25 минут, но может ли оно быть достигнуто? Необходимо организовать работу кузнецов без простоев. Будем действовать, не нарушая симметрии. Расположим пять лошадей по кругу. После того как четверо кузнецов подкуют каждый одно копыто лошади, кузнецы сдвинутся на одну лошадь по кругу. Чтобы обойти полный круг, потребуется пять тактов работы по пять минут. Во время 4 тактов каждая лошадь будет подковываться, а один такт отдыхать. В итоге все лошади будут подкованы за 25 минут.

2 шаг. Возвращаясь к исходной задаче, заметим, что 8=2* 4, а 10=2*5. Тогда 8 кузнецов нужно разбить на две бригады

по 4 человека в каждой, а лошадей – на два табуна по 5 лошадей в каждом.

За 25 минут первая бригада кузнецов подкует первый табун, а вторая – второй.

При решении использовалось «очередное» правило.

Конечно, может встретиться задача, к которой не удастся применить ни одного из перечисленных правил. Тогда нужно изобрести особый метод решения этой задачи.

Необходимо помнить, что решение нестандартных задач есть искусство, которым можно овладеть лишь в результате постоянного самоанализа действий по решению задач.

2. Образовательные функции нестандартных задач.

Роль нестандартных задач в формировании логического мышления.

На современном этапе обучения наметилась тенденция использования задач как необходимого компонента обучения учащихся математике. Объясняется это, прежде всего, возрастающими требованиями, направленными на усиление развивающих функций обучений.

Понятие «нестандартная задача» используется многими методистами. Так, Ю. М. Колягин раскрывает это понятие следующим образом: «Под нестандартной понимается задача, при предъявлении которой учащиеся не знают заранее ни способа ее решения, ни того, на какой учебный материал опирается решение».

Опираясь на анализ теории и практики использования нестандартных задач в обучении математике, установлена их общая и специфическая роль.

Нестандартные задачи:

Учат детей использовать не только готовые алгоритмы, но и самостоятельно находить новые способы решения задач, т. е. способствуют умению находить оригинальные способы решения задач;

Оказывают влияние на развитие смекалки, сообразительности учащихся;

препятствуют выработке вредных штампов при решении задач, разрушают неправильные ассоциации в знаниях и умениях учащихся, предполагают не столько усвоение алгоритмических приемов, сколько нахождение новых связей в знаниях, к переносу

знаний в новые условия, к овладению разнообразными приемами умственной деятельности;

Создают благоприятные условия для повышения прочности и глубины знаний учащихся, обеспечивают сознательное усвоение математических понятий.

Нестандартные задачи:

Не должны иметь уже готовых, заученных детьми алгоритмов;

Должны быть доступны по содержанию всем учащимся;

Должны быть интересными по содержанию;

Для решения нестандартных задач учащимся должно хватать знаний, усвоенных ими по программе.

3.Методика формирования умения решать нестандартные задачи.

Задача№1.

По пустыне медленно идет караван верблюдов, всего их 40. Если пересчитать все горбы у этих верблюдов, то получится 57 горбов. Сколько в этом караване одногорбых верблюдов?

Сколько горбов может быть у верблюдов?

(их может быть два или один)

Давайте каждому верблюду на один горб прикрепим цветок.

Сколько цветков потребуется? (40 верблюдов – 40 цветов)

Сколько верблюдов останется без цветов?

(Таких будет 57-40=17. Это вторые горбы двугорбых верблюдов).

Сколько двугорбых верблюдов? (17)

Сколько одногорбых верблюдов? (40-17=23)

Каков же ответ задачи? (17 и 23 верблюдов).

Задача № 2.

В гараже стояли легковые машины и мотоциклы с колясками, всех вместе 18. У машин и мотоциклов – 65 колес. Сколько мотоциклов с колясками стояло в гараже, если у машин 4 колеса, а у мотоцикла – 3 колеса?

Переформулируем задачу. Грабители, пришедшие в гараж, где стояли 18 машин и мотоциклов с колясками, сняли с каждой машины и каждого мотоцикла по три колеса и унесли. Сколько колес осталось в гараже, если их было 65? Машине или мотоциклу они принадлежат?

Сколько колес унесли грабители? (3*18=54колес)

Сколько осталось колес? (65-54=11)

Сколько машин было в гараже?

В гараже стояли 18 легковых машин и мотоциклов с коляской. У машин и мотоциклов 65 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

Сколько стало колес у машин и мотоциклов вместе? (4*18=72)

Сколько запасных колес положили в каждую коляску? (72-65= 7)

Сколько машин в гараже? (18-7=1)

Задача №3.

Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы -35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

Запишем краткое условие задачи:

1 лошади и 2 коров -34кг.

2 лошадей и 1 коров -35кг.

Можно ли узнать, сколько сена потребуется для 3 лошадей и 3 коров? (для 3 лошадей и 3 коров – 34+35=69 кг)

Можно ли узнать, сколько сена потребуется для одной лошади и одной коровы? (69: 3 – 23кг)

Сколько сена потребуется для одной лошади? (35-23=12кг)

Сколько сена потребуется для одной коровы? (23 -13 =11кг)

Ответ: 12кг и 11 кг

Задача№4.

-Летели гуси: 2 впереди, 1 позади, 1 впереди, 2 позади.

Сколько гусей летело?

Сколько летело гусей, как сказано в условии? (2 впереди, 1 позади)

Изобразите это точками.

Изобразите точками.

Посчитайте то, что у вас получилось (2 впереди, 1, 1, 2 позади)

Так говорится в условии? (нет)

Значит, вы нарисовали гусей лишних. По вашему рисунку можно сказать, что 2 впереди и 4 позади, или 4 впереди, а 2 позади. А это не по условию. Что же нужно сделать? (убрать 3 последние точки)

Что получится?

Так сколько же гусей летело? (3)

Задачи № 5.

Четыре утенка и пять гусят весят 4кг 100г, пять утят и четыре гусенка весят 4 кг. Сколько весит один утенок?

Переформулируем задачу.

Четыре утенка и пять гусят весят 4кг 100г, пять утят и четыре гусенка весят 4 кг.

Сколько весят один утенок и один гусенок вместе?

Сколько весят 9 утят и 9 гусят вместе?

Примените решение вспомогательной задачи для решения основной, зная сколько весят 3 утенка и 3 гусенка вместе?

Задачи с элементами комбинаторики и на смекалку.

Задача № 6.

Марина решила позавтракать в школьном буфете. Изучи меню и ответь, сколькими способами она может выбрать напиток и кондитерское изделие?

Давайте предположим, что из напитков Марина выберет чай. Какое кондитерское изделие она может подобрать к чаю? (чай – ватрушка, чай – печенье, чай – булка)

Сколько способов? (3)

А если компот? (тоже 3)

Как же узнать, сколько способов может Марина использовать, чтобы выбрать себе обед? (3+3+3=9)

Да, вы правы. Но чтобы нам было легче решать такую задачу, мы будем использовать графы. Обозначим напитки и кондитерские изделия точками и соединим пары тех блюд, которые выберет Марина.

чай молоко компот

ватрушка печенье булочка

Теперь сосчитаем количество линий. Их 9. Значит, существует 9 способов выбора блюд.

Задача № 7.

Три богатыря – Илья Муромец, Алеша Попович и Добрыня Никитич, защищая от нашествия родную землю, срубили Змею Горынычу все 13 голов. Больше всех голов срубил Илья Муромец, а меньше всех – Алеша Попович. Сколько голов мог срубить каждый из них?

Кто может ответить на этот вопрос?

(учитель спрашивает несколько человек – ответы у всех разные)

Почему получились разные ответы? (потому что не сказано конкретно, сколько голов срубил хотя бы один из богатырей)

Давайте попробуем найти все возможные варианты решения этой задачи. Поможет нам в этом таблица.

Какое условие мы обязательно должны соблюдать, решая эту задачу? (Все богатыри срубили разное количество голов, и у Алеши – меньше всех, у Ильи – больше всех)

Сколько же вариантов решения имеет данная задача? (8)

Такие задачи называют – задачи с многовариантными решениями.

Составьте свою задачу с многовариантным решением.

Задача № 8.

-В битве с трехглавым и треххвостым Змеем Горынычем

Иван-Царевич одним ударом меча может срубить либо одну голову, либо две головы, либо один хвост, либо два хвоста. Если срубить одну голову – новая вырастет, если срубить один хвост – два новых вырастут, если срубить два хвоста – голова вырастет, если срубить две головы – ничего не вырастет. Посоветуйте Ивану-Царевичу, как поступить, чтобы он мог срубить Змею все головы и хвосты.

Что же произойдет, если Иван-Царевич отрубит одну голову? (вырастет новая голова)

Есть смысл отрубать одну голову? (нет, ничего не изменится)

Значит, отрубание одной головы исключаем - лишняя трата сил и времени.

Что произойдет, если отрубить один хвост? (вырастут два новых хвоста)

А если отрубить два хвоста? (вырастет голова)

А две головы? (ничего не вырастет)

Итак, мы не можем срубить одну голову, т. к. при этом ничего не изменится, опять вырастет голова. Надо добиться такого положения, чтобы голов было четное число, а хвостов – ни одного. Но для этого нужно, чтобы и хвостов было четное число.

Как же можно добиться нужного результата?

1). 1-ый удар: срубить 2 хвоста – станет 4 головы и 1 хвост;

2-ой удар: срубить 1 хвост – станет 4 головы и 2 хвоста;

3-ий удар: срубить 1 хвост – станет 4 головы и 3 хвоста;

4-ый удар: срубить 1 хвост – станет 4 головы и 4 хвоста;

5-ый удар: срубить 2 хвоста – станет 5 голов и 2 хвоста;

6-ой удар: срубить 2 хвоста – станет 6 голов и 0 хвостов;

7-ой удар: срубить 2 головы – станет 4 головы;

2). 1-ый удар: срубить 2 головы – станет 1 голова и 3 хвоста;

2-ой удар: срубить 1 хвост – станет 1 голова и 4 хвоста;

3-ий удар: срубить 1 хвост – станет 1 голова и 5 хвостов;

4-ый удар: срубить 1 хвост – станет 1 голова и 6 хвостов;

5-ый удар: срубить 2 хвоста – станет 2 головы и 4 хвоста;

6-ой удар: срубить 2 хвоста – станет 3 головы и 2 хвоста;

7-ой удар: срубить 2 хвоста – станет 4 головы;

8-ой удар: срубить 2 головы – станет 2 головы;

9-ый удар: срубить 2 головы – станет 0 голов.

Задача № 9.

В семье четверо детей: Сережа, Ира, Витя и Галя. Им 5, 7, 9 и 11 лет. Сколько лет каждому из них, если один из мальчиков ходит в детский сад, Ира моложе Сережи, а сумма лет девочек делится на 3?

Повторите условие задачи.

Чтобы не запутаться в процессе рассуждений начертим таблицу.

Что мы знаем про одного из мальчиков? (ходит в детский сад)

Сколько лет этому мальчику? (5)

Этого мальчика могут звать Сережа? (нет, Сережа старше Иры, значит, его зовут Витя)

Поставим в строке «Витя», столбце «5» знак «+». Значит, самого младшего ребенка зовут Витя и ему 5 лет.

Что знаем про Иру? (она младше Сережи, и если к ее возрасту прибавить возраст другой сестры, то эта сумма будет делиться на 3)

Попробуем вычислить все суммы чисел 7, 9 и 11.

16 и 20 на 3 не делится, а 18 на 3 делится.

Значит, возраст девочек 7 и 11 лет.

Сколько лет Сереже? (9)

А Ире? (7, т. к. она младше Сережи)

А Гале? (11 лет)

Заносим данные в таблицу:

Какой же ответ на вопрос задачи? (Вите 5 лет, Ире 7 лет, Сереже 9 лет, а Гале 11 лет)

Задача №10.

Катя, Соня, Галя и Тома родились 2 марта, 17 мая, 2 июня, 20 марта. Соня и Галя родились в одном месяце, а у Гали и Кати день рождения обозначился одинаковыми числами. Кто, какого числа, и в каком месяце родился?

Прочитайте задачу.

Что знаем? (что Соня и Галя родились в одном месяце, а Галя и Катя – в одно число)

Значит, в каком месяце день рождения у Сони и Гали? (в марте)

А что можно сказать про Галю, зная, что она родилась в марте, да еще ее число совпадает с числом Кати? (Галя родилась 2 марта)

Понятие «нестандартная задача» используется многими методистами. Так, Ю. М. Колягин раскрывает это понятие следующим образом: «Под нестандартной понимается задача, при предъявлении которой учащиеся не знают заранее ни способа ее решения, ни того, на какой учебный материал опирается решение» .

Определение нестандартной задачи приведено также в книге «Как научиться решать задачи» авторов Л.М. Фридмана, Е.Н. Турецкого: «Нестандартные задачи - это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения» .

Не следует путать нестандартные задачи с задачами повышенной сложности. Условия задач повышенной сложности таковы, что позволяют ученикам довольно легко выделить тот математический аппарат, который нужен для решения задачи по математике. Учитель контролирует процесс закрепления знаний, предусмотренных программой обучения решением задач этого типа. А вот нестандартная задача предполагает наличие исследовательского характера. Однако если решение задачи по математике для одного учащегося является нестандартным, поскольку он незнаком с методами решения задач данного вида, то для другого - решение задачи происходит стандартным образом, так как он уже решал такие задачи и не одну. Одна и та же задача по математике в 5 классе нестандартна, а в 6 классе она является обычной, и даже не повышенной сложности.

Анализ учебников и учебных пособий по математике показывает, что каждая текстовая задача в определенных условиях может быть нестандартной, а в других - обычной, стандартной. Стандартная задача одного курса математики может быть нестандартной в другом курсе.

Опираясь на анализ теории и практики использования нестандартных задач в обучении математике, можно установить их общую и специфическую роль. Нестандартные задачи:

  • · учат детей использовать не только готовые алгоритмы, но и самостоятельно находить новые способы решения задач, т.е. способствуют умению находить оригинальные способы решения задач;
  • · оказывают влияние на развитие смекалки, сообразительности учащихся;
  • · препятствуют выработке вредных штампов при решении задач, разрушают неправильные ассоциации в знаниях и умениях учащихся, предполагают не столько усвоение алгоритмических приемов, сколько нахождение новых связей в знаниях, к переносу знаний в новые условия, к овладению разнообразными приемами умственной деятельности;
  • · создают благоприятные условия для повышения прочности и глубины знаний учащихся, обеспечивают сознательное усвоение математических понятий.

Нестандартные задачи:

  • · не должны иметь уже готовых, заученных детьми алгоритмов;
  • · должны быть доступны по содержанию всем учащимся;
  • · должны быть интересными по содержанию;
  • · для решения нестандартных задач учащимся должно хватать знаний, усвоенных ими по программе.

Решение нестандартных задач активизирует деятельность учащихся. Учащиеся учатся сравнивать, классифицировать, обобщать, анализировать, а это способствует более прочному и сознательному усвоению знаний.

Как показала практика, нестандартные задачи весьма полезны не только для уроков, но и для внеклассных занятий, для олимпиадных заданий, так как при этом открывается возможность по-настоящему дифференцировать результаты каждого участника. Такие задачи могут с успехом использоваться и в качестве индивидуальных заданий для тех учеников, которые легко и быстро справляются с основной частью самостоятельной работы на уроке, или для желающих в качестве дополнительных заданий. В результате учащиеся получают интеллектуальное развитие и подготовку к активной практической деятельности.

Общепринятой классификации нестандартных задач нет, но Б.А. Кордемский выделяет следующие виды таких задач:

  • · Задачи, примыкающие к школьному курсу математики, но повышенной трудности - типа задач математических олимпиад. Предназначаются в основном для школьников с определившимся интересом к математике; тематически эти задачи обычно связаны с тем или иным определённым разделом школьной программы. Относящиеся сюда упражнения углубляют учебный материал, дополняют и обобщают отдельные положения школьного курса, расширяют математический кругозор, развивают навыки в решении трудных задач.
  • · Задачи типа математических развлечений. Прямого отношения к школьной программе не имеют и, как правило, не предполагают большой математической подготовки. Это не значит, однако, что во вторую категорию задач входят только лёгкие упражнения. Здесь есть задачи с очень трудным решением и такие задачи, решение которых до сих пор не получено. «Нестандартные задачи, поданные в увлекательной форме, вносят эмоциональный момент в умственные занятия. Не связанные с необходимостью всякий раз применять для их решения заученные правила и приёмы, они требуют мобилизации всех накопленных знаний, приучают к поискам своеобразных, не шаблонных способов решения, обогащают искусство решения красивыми примерами, заставляют восхищаться силой разума» .

К этому виду задач относятся:

­ разнообразные числовые ребусы («… примеры, в которых все или некоторые цифры заменены звездочками или буквами. Одинаковые буквы заменяют одинаковые цифры, разные буквы - разные цифры» .) и головоломки на смекалку;

­ логические задачи, решение которых не требует вычислений, но основывается на построении цепочки точных рассуждений;

­ задачи, решение которых основывается на соединении математического развития и практической смекалки: взвешивание и переливания при затруднительных условиях;

­ математические софизмы - это умышленное, ложное умозаключение, которое имеет видимость правильного. (Софизм - доказательство ложного утверждения, причём ошибка в доказательстве искусно замаскирована. Софизм в переводе с греческого означает хитроумную выдумку, ухищрение, головоломку);

­ задачи-шутки;

­ комбинаторные задачи, в которых рассматриваются различные комбинации из заданных объектов, удовлетворяющие определённым условиям (Б.А. Кордемский, 1958).

Не менее интересна классификация нестандартных задач, приведённая И.В. Егорченко:

  • · задачи, направленные на поиск взаимосвязей между заданными объектами, процессами или явлениями;
  • · задачи, неразрешимые или не решаемые средствами школьного курса на данном уровне знаний учащихся;
  • · задачи, в которых необходимо:

­ проведение и использование аналогий, определение различий заданных объектов, процессов или явлений, установление противоположности заданных явлений и процессов или их антиподов;

­ осуществление практической демонстрации, абстрагирование от тех или иных свойств объекта, процесса, явления или конкретизации той или иной стороны данного явления;

­ установка причинно-следственных отношений между заданными объектами, процессами или явлениями;

­ построение аналитическим или синтетическим путем причинно-следственных цепочек с последующим анализом получившихся вариантов;

­ правильное осуществление последовательности определенных действий, избегая ошибок-«ловушек»;

­ осуществление перехода от плоскостного к пространственному варианту заданного процесса, объекта, явления или наоборот (И.В. Егорченко, 2003).

Итак, единой классификации нестандартных задач нет. Их существует несколько, но автор работы использовал в исследовании классификацию, предложенную И.В. Егорченко.

В сборнике представлены материалы по формированию умений учащихся решать нестандартные задачи.Умение решать нестандартные задачи, т. е. такие, алгоритм решения которых не известен заранее, – важный компонент школьного обучения. Как же научить школьников решать нестандартные задачи? Об одном из возможных вариантов такого обучения – постоянном конкурсе решения задач рассказывалось на страницах приложения «Математика» (№ 28-29, 38-40/96). Предлагаемый Вашему вниманию набор задач может быть использован и во внеклассной работе . Материал подготовлен по заявкам педагогов города Костромы.

Умение решать задачи – важнейшая (и легче всего контролируемая) составляющая математического развития учащихся. Речь идет не о типовых заданиях (упражнениях), а о задачах нестандартных,алгоритм решения которых заранее не известен (граница между этими видами задач условна, и то, что является нестандартным для шестиклассника, может быть привычным для ученика седьмого класса!. Предлагаемые ниже 150 задач (непосредственное продолжение нестандартных задач для пятиклассников) предназначены для проведения годового конкурсав 6-м классе. Эти задачи также могут быть использованы и во внеклассной работе.

Комментарий к задачам

Все задачи можно условно разделить на три группы:

1.Задачи на смекалку. Для решения таких задач, как правило, не требуется глубоких знаний, необходимы лишь сообразительность и желание преодолеть трудности, встречающиеся на пути к решению. Кроме всего прочего – это шанс заинтересовать учеников, которые не проявляют особого рвения к учению, и, в частности, к математике.

2.Задачи на закрепление материала. Время от времени, необходимо решать задачи, предназначенные исключительно для закрепления усвоенных идей. Заметим, что проверять степень усвоения нового материала желательно через некоторое время после его изучения.

3.Задачи на пропедевтику новых идей. Задачи этого типа подготавливают учеников к систематическому изучению программного материала, а содержащиеся в них идеи и факты получают в дальнейшем естественное и простое обобщение. Так, например, вычисление различных числовых сумм поможет ученикам понять вывод формулы суммы арифметической прогрессии, а идеи и факты, содержащиеся в некоторых текстовых задачах данного набора, готовят к изучению тем: Системы линейных уравнений», «Равномерное движение» и т. Д. Как показывает опыт, чем дольше изучается материал, тем легче его усвоить.

О решении задач

Отметим принципиально важные моменты:

1. Мы приводим «чисто арифметические» решения текстовых задач, где это представляется возможным, даже если школьники могут легко решать их с помощью уравнений. Это объясняется тем, что воспроизведение материала в словесной форме требует значительно больших логических усилий и поэтому наиболее эффективно развивает мышление учащихся. Умение излагать материал в словесной форме – важнейший показатель уровня математического мышления.

2. Изученный материал лучше усваивается, если в сознании учащихся он связан с другим материалом, поэтому, как правило, мы ссылаемся на уже решенные задачи (такие ссылки набраны курсивом).

3. Задачи полезно решать разными способами (положительная оценка ставится за любой способ решения). Поэтому для всех текстовых задач кроме арифметическогорассматривается алгебраическоерешение (уравнение). Учителю рекомендуется провести сравнительный анализ предложенных решений.

Условия задач

1.1. На какое однозначное число надо умножить, чтобы в результате получилось новое число, записанное одними единицами?

1.2.Если Аня идет в школу пешком, а обратно едет на автобусе, то всего на дорогу она затрачивает 1,5 ч. Если же она едет в оба конца на автобусе, то весь путь занимает у нее 30 мин. Сколько времени потратит Аня на дорогу, если и в школу, и из школы она будет идти пешком?

1.3.Картофель подешевел на 20%. На сколько процентов больше можно купить картофеля на ту же сумму?

1.4.В шестилитровом ведре содержится 4 л кваса, а в семилитровом – 6 л. Как разделить весь имеющийся квас пополам, используя эти ведра и пустую трехлитровую банку?

1.5.Можно ли ходом шахматного коня попасть из левого нижнего угла доски в правый верхний, побывав на каждом поле ровно один раз? Если можно, то укажите маршрут, если же нет, то объясните, почему.

2.1. Верно ли утверждение: если к отрицательному числу прибавить квадрат этого же числа, то всегда получится положительное число?

2.2. Я иду от дома до школы 30 мин, а мой брат – 40 мин. Через сколько минут я догоню брата, если он вышел из дома на 5 мин раньше меня?

2.3. Ученик написал на доске пример на умножение двузначных чисел. Затем он стер все цифры и заменил их буквами. Получилось равенство: .Докажите, что ученик ошибся.

2.4. Кувшин уравновешивает графин и стакан, два кувшина весят столько же, сколько три чашки, а стакан и чашка уравновешивают графин. Сколько стаканов уравновешивают графин?

3.1. Пассажир, проехав половину всего пути, лег спать и спал до тех пор, пока не осталось ехать половину того пути, что он проехал спящим. Какую часть пути он проехал спящим?

3.2. Какое слово зашифровано в записи числа, если каждая буква заменена её номером в алфавите ?

3.3. Даны 173 числа, каждое из которых равно 1 или -1. Можно ли разбить их на две группы так, чтобы суммы чисел в группах были равны?

3.4.Школьник прочитал книгу за 3 дня. В первый день он прочитал 0,2 всей книги и еще 16 страниц, во второй день – 0,3 остатка и еще 20 страниц, а в третий день – 0,75 нового остатка и последние 30 страниц. Сколько страниц в книге?

3.5.Окрашенный куб с ребром 10 см распилили на кубики с ребром, равным 1 см. Сколько среди них окажется кубиков с одной окрашенной гранью? С двумя окрашенными гранями?

4.1. Из чисел 21, 19, 30, 25, 3, 12, 9, 15, 6, 27 выбрать три такие числа, сумма которых равна 50.

4.2. Машина едет со скоростью 60 км/ч. На сколько надо увеличить скорость, чтобы километр пути проезжать на одну минуту быстрее?

4.3. К доске для игры в крестики-нолики добавлена одна клетка (см. рисунок). Как нужно играть первому игроку, чтобы наверняка обеспечить себе выигрыш?

4.4. В шахматном турнире участвовало 7 человек. Каждый шахматист сыграл с каждым по одной партии. Сколько партий было сыграно?

4.5. Можно ли разрезать шахматную доску на прямоугольники размером 3x1?

5.1. За книгу заплатили 5000 р. И осталось заплатить столько, сколько осталось бы заплатить, если бы за нее заплатили столько, сколько осталось заплатить. Сколько стоит книга?

5.2.Племянник спросил дядю, сколько тому лет. Дядя ответил: «Если к половине моих лет прибавить 7, то узнаешь мой возраст 13 лет назад». Сколько лет дяде?

5.3.Если между цифрами некоторого двузначного числа вписать 0, то полученное трехзначное число в 9 раз больше первоначального. Найдите это двузначное число.

5.4.Найдите сумму чисел 1 + 2 + … + 870 + 871.

5.5.Имеется 6 палочек, каждая длиной по 1 см, 3 палочки – по 2 см, 6 палочек – по 3 см, 5 палочек – по 4 см. Можно ли из этого набора составить квадрат, используя при этом все палочки, не ломая их и не накладывая одна на другую?

6.1. Множимое увеличили на 10%, а множитель уменьшили на 10%. Как при этом изменилось произведение?

6.2. Три бегуна А , Б и В соревновались в беге на 100 м. Когда А добежал до конца дистанции, Б отставал от него на 10 м, Когда Б добежал до финиша, В отставал от него на 10 м. На сколько метров отставал В от А , когда А финишировал?

6.3. Количество отсутствующих учеников в классе составляет числа присутствующих. После того, как из класса вышел один ученик, число отсутствующих стало равно числа присутствующих. Сколько учеников в классе?

6.4. Арбуз уравновешивает дыню и свеклу. Дыня уравновешивает капусту и свеклу. Два арбуза весят столько же, сколько три кочана капусты. Во сколько раз дыня тяжелее свеклы?

6.5. Можно ли прямоугольник размером 4x8 разрезать на 9 квадратов?

7.1. Цену товара уменьшили на 10%, а затем еще раз на 10%. Станет ли товар дешевле, если его цену сразу снизить на 20%?

7.2. Гребец, плывя по реке, потерял под мостом шляпу. Через 15 мин он заметил пропажу, вернулся и поймал шляпу в 1 км от моста. Какова скорость течения реки?

7.3.Известно, что одна из монет фальшивая и она легче остальных. За сколько взвешиваний на чашечных весах без гирь можно определить, какая именно монета фальшивая?

7.4.Можно ли по правилам игры выложить в цепь все 28 костей домино так, чтобы на одном конце оказалась «шестерка», а на другом - «пятерка»?

7.5.Имеется 19 телефонов. Можно ли соединить их попарно так, чтобы каждый был соединен ровно с тринадцатью из них?

8.1. В соревнованиях по олимпийской системе (проигравший выбывает) участвует 47 боксеров. Сколько боев надо провести, чтобы определить победителя?

8.2. В саду растут яблони и вишни . Если взять всех вишен и всех яблонь, то и тех, и других деревьев останется поровну, а всего в саду 360 деревьев. Сколько яблонь и вишен было в саду?

8.3.Коля, Боря, Вова и Юра заняли в соревновании первые четыре места, причем никакие два мальчика не делили между собой какие-нибудь места. На вопрос, кто какое место завял, Коля ответил: «Ни первое, ни четвертое».Боря сказал: «Второе», а Вова заметил, что он не был последним. Какое место занял каждый из мальчиков, если все они сказали правду?

8.4. Делится ли числона 9?

8.5. Разрежьте прямоугольник, длина которого равна 9 см, а ширина 4 см, на две равные части так, чтобы из них было можно сложить квадрат.

9.1. Собрали 100 кг грибов. Оказалось, что их влажность 99%. Когда грибы подсушили, влажность

снизилась до 98%. Какой стала масса грибов после подсушивания?

9.2.Можно ли из чисел 1, 2, 3, …, 11, 12 составить таблицу из 3 строк и 4 столбцов такую, чтобы сумма чисел в каждом из столбцов была одной и той же?

9.3.Какой цифрой оканчивается сумма135x + 31y + 56x+y, если x и y натуральные числа?

9.4.Пятеро мальчиков Андрей, Боря, Володя, Гена и Дима имеют разный возраст: одному 1 год, другому 2 года, остальным 3, 4 и 5 лет. Володя – самый маленький, Диме столько лет, сколько Андрею и Гене вместе. Сколько лет Боре? Чей еще возраст можно определить?

9.5.У шахматной доски отпилены два поля: левое нижнее и правое верхнее. Можно ли покрыть такую шахматную доску «костями» домино размером 2x1?

10.1. Можно ли из чисел 1,2,3,…. 11,12 составить таблицу из 3 строк и 4 столбцов такую, чтобы сумма чисел в каждой из трех строк была одной и той же?

10.2.

Директор завода обычно приезжает поездом в город в 8 ч. Точно к этому времени подъезжает автомобиль и отвозит его на завод. Однажды директор приехал на вокзал в 7 ч и пошел на завод пешком. Встретив машину, он сел в нее и приехал на завод на 20 мин раньше обычного. Какое время показывали часы в момент встречи директора с машиной?

10.3. В двух мешках 140 кг муки. Если из первого мешка переложить во второй 1/8 часть муки, находящейся в первом мешке, то в обоих мешках муки будет поровну. Сколько муки было первоначально в каждом мешке?

10.4.

В одном месяце три среды пришлись на четные числа. Какого числа в этом месяце будет второе воскресенье?

10.5.

После 7 стирок длина, ширина и толщина куска мыла уменьшились вдвое. На сколько таких же стирок хватит оставшегося мыла?

▼ 11.1.

Продолжите ряд чисел: 10, 8, 11, 9, 12, 10 до восьмого числа. По какому правилу он составлен?

11.2.

Из дома в школу Юравышел на 5 мин позже Лены,но шел в два раза быстрее, чем она. Через сколько минут после выхода Юрадогонит Лену?

11.3.

2100?

11.4.

Ученики двух шестых классов купили 737 учебников, причем каждый купил одинаковое количество учебников. Сколько было шестиклассников, и сколько каждый из них купил учебников?

11.5. Найдите площадь изображенного на рисунке треугольника (площадь каждой клетки 1 кв. см).

12.1. Влажность свежескошенной травы 60%, а сена 15%. Сколько сена получится из одной тонны свежескошенной травы?

12.2.

Пять учеников купила 100 тетрадей. КоляиВасякупили 52 тетради, ВасяиЮра– 43, Юраи Саша –34, СашаиСережа– 30. Сколько тетрадей купил каждый из них?

12.3.

Сколько шахматистов играло в круговом турнире, если всего было сыграно 190 партий?

12.4.

На какую цифру заканчивается число З100?

12.5.

Известно, что длины сторон треугольника – целые числа, причем одна сторона равна 5, а другая 1. Чему равна длина третьей стороны?

13.1. Билет стоилруб. После снижения платы за проезд число пассажиров увеличилось на 50%, а выручка при этом выросла на 25%. Сколько стал стоить билет после снижения?

13.2.

От Нижнего Новгорода до Астрахани теплоход идет 5 суток, а обратно – 7 суток. Сколько времени будут плыть плоты от Нижнего Новгорода до Астрахани?

13.3.

Юравзял книгу на 3 дня. В первый день он прочитал половину книги, во второй – треть оставшихся страниц, а количество страниц, прочитанных в третий день, равно половине страниц, прочитанных за первые два дня. Успел ли Юрапрочитать книгу за 3 дня?

13.4.

Алеша, Боряи Витяучатся в одном классе. Один из них ездит домой из школы на автобусе, другой – на трамвае, третий – на троллейбусе. Однажды после уроков Алешапошел проводить друга до остановки автобуса. Когда мимо них проходил троллейбус, третий друг крикнул из окна: «Боря,ты забыл в школе тетрадь!» На каком виде транспорта каждый ездит домой?

13.5.

Мне сейчас вдвое больше лет, чем вам было тогда, когда мне было столько лет, сколько вам сейчас. Сейчас нам вместе 35 лет. Сколько лет каждому из вас?

14.1.Дано 2001 число. Известно, что сумма любых четырех из них положительна. Верно ли, что сумма всех чисел положительна?

14.2.

Когда велосипедист проехал пути, лопнула шина. Оставшийся путь он прошел пешком и затратил на это в 2 раза больше времени, чем на езду на велосипеде. Во сколько раз велосипедист ехал быстрее, чем шел?

14.3.

Имеются двух чашечные весы и гири массой 1, 3, 9, 27 и 81 г. На одну чашку весов кладут груз, гири разрешается класть на обе чашки. Докажите что весы можно уравновесить, если масса груза равна: а) 13 г; б) 19 г; в) 23 г; г) 31 г.

14.4.

Ученик написал на доске пример на умножение двузначных чисел. Затем он стер все цифры и заменил их буквами: одинаковые цифры – одинаковыми буквами, а разные – разными. Получилось равенство: .Докажите, что ученик ошибся.

14.5.

Среди музыкантов каждый седьмой – шахматист, а среди шахматистов каждый девятый – музыкант. Кого больше: музыкантов или шахматистов? Почему?

15.1. Длину прямоугольного участка увеличили на 35%, а ширину уменьшили на 14%. На сколько процентов изменилась площадь участка?

15.2.

Вычислили сумму цифр числа 109! Затем вычислили сумму цифр вновь полученного числа и так продолжали до тех пор, пока не было получено однозначное число. Что это за число?

15.3.

Три пятницы некоторого месяца пришлись на четные даты. Какой день недели был 18 числа этого месяца?

15.4.

Разбирается дело Браун, Джонсаи Смита.Один из них совершил преступление. В процессе расследования каждый из них сделал по два заявления:

Браун:1. Я не преступник. 2. Джонс тоже.

Джонс: 1,Это не Браун. 2. Это Смит.

Сжит: 1.Преступник Браун. 2. Это не я.

Было установлено, что один из них дважды солгал, другой дважды сказал правду, а третий один раз солгал и один раз сказал правду. Кто совершил преступление?

15.5.

На часах 19 ч 15 мин. Чему равен угол между минутной и часовой стрелками?

16.1.Если человек, стоящий в очереди перед Вами, был выше человека, стоящего после того человека, который стоял перед вами, то был ли человек, стоящий перед Вами, Выше вас?

16.2.

В классе учатся менее 50 школьников. За контрольную работу седьмая часть учеников получила оценку «5», третья часть – «4», а половина – «3». Остальные получили «2». Сколько было таких работ?

16.3.

Два велосипедиста выехали одновременно из пунктов Аи Внавстречу друг другу и встретились в 70 км от А.Продолжая двигаться с теми же скоростями, они достигли конечных пунктов и, отдохнув равное время, вернулись назад. Вторая встреча произошла в 90 км от В.Найдите расстояние от Адо В.

16.4.

Делится ли число 111…111(999 единиц) на 37?

16.5.

Разделите прямоугольник размером 18x8 на части так, чтобы из этих частей можно было сложить квадрат.

17.1.Когда Ванюспросили, сколько ему лет, он подумал и сказал: «Я втрое моложе папы, но зато втрое старше Сережи». Тут подбежал маленький Сережаи сообщил, что папа старше его на 40 лет. Сколько лет Ване?

17.2.

На три склада доставлен груз. На первый и второй склады было доставлено 400 т, на второй и третий вместе 300 т, а на первый и третий – 440 т. Сколько тонн груза было доставлено на каждый склад в отдельности?

17.3.

От потолка комнаты вертикально вниз по стене поползли две мухи. Спустившись до пола, они поползли обратно. Первая муха ползла в оба конца с одной и той же скоростью, а вторая, хотя и поднималась в два раза медленней первой, но зато спускалась вдвое быстрее. Какая из мух раньше приползет обратно?

17.4.

В магазин привезли 25 ящиков яблок трех сортов, причем в каждом из ящиков лежали яблоки какого-то одного сорта. Можно ли найти 9 ящиков с яблоками одного сорта?

17.5.

Найдите два простых числа, сумма и разность которых также является простым числом.

18.1. Задумано трехзначное число, у которого с любым из чисел 543, 142 и 562 совпадает один из разрядов, а два других не совпадают. Какое число задумано?

18.2.

На балу каждый кавалер танцевал с тремя дамами, а каждая дама – с тремя кавалерами. Докажите, что на балу число дам было равно числу кавалеров.

18.3.

В школе, 33 класса, 1150 учеников. Найдется ли в этой школе класс, в котором не менее 35 учеников?

18.4.

В одном районе города более 94% домов имеют больше 5 этажей. Какое наименьшее число домов возможно в данном районе?

18.5.

Найдите все треугольники, длины сторон которых целые числа сантиметров и длина каждой из них не превышает 2 см.

19.1. Докажите, что если сумма двух натуральных чисел меньше 13, то их произведение не больше 36.

19.2.

Из 75 одинаковых по виду колец одно по весу отличается от других. Как за два взвешивания на чашечных весах определить, легче или тяжелее это кольцо, чем остальные?

19.3.

Самолет летел из А в В сначала со скоростью 180 км/ч, но когда ему осталось лететь на 320 км меньше, чем он уже пролетел, он увеличил скорость до 250 км/ч. Оказалось, что средняя скорость самолета на всем пути 200 км/ч. Определите расстояние от Адо В.

19.4.

Милиционер обернулся на звук бьющегося стекла и увидел четырех подростков, убегающих от разбитой витрины . Через 5 мин они были в отделении милиции. Андрейзаявил, что стекло разбил Виктор, Виктор жеутверждал, что виноват Сергей.Сергейзаверял, что Викторлжет, а Юрийтвердил, что это сделал не он. Из дальнейшего разговора выяснилось, что лишь один из ребят говорил правду. Кто разбил стекло?

19.5.

На доске выписаны все натуральные числа от 1 до 99. Каких цифр на доске больше - четных или нечетных?

20.1. Два крестьянина вышли из деревни в город. Пройдя пути, они сели отдохнуть. «Сколько еще осталось идти?» - спросил один другого. «Нам осталось пройти на 12 км больше, чем мы уже прошли», - был ответ. Чему равно расстояние между городом и деревней?

20.2.

Докажите, что число 7777 + 1 не делится на 5.

20.3.

В семье четверо детей, им 5, 8, 13 и 15 лет. Детей зовут Аня, Боря, Вераи Галя.Сколько лет каждому ребенку, если одна из девочек ходит в детский сад, Анястарше Бории сумма лет Ании Верыделится на 3?

20.4.

В темной комнате 10 арбузов и 8 дынь (дыни и арбузы не различимы на ощупь). Сколько нужно взять фруктов, чтобы среди них было не менее двух арбузов?

20.5.

Пришкольный участок прямоугольной формы имеет периметр 160 м. Как изменится его площадь, если длину каждой стороны увеличить на 10 м?

21.1. Найти сумму 1 + 5 + … + 97 + 101.

21.2.

Вчера число учеников, присутствующих в классе, было в 8 раз больше отсутствующих. Сегодня не пришло еще 2 ученика и оказалось, что отсутствуют 20% от числа учеников, присутствующих в классе. Сколько всего учеников в классе?

21.3.

Что больше 3200 или 2300?

21.4.

Сколько диагоналей у тридцатичетырехугольника?

21.5.

Посередине участка квадратной формы устроена цветочная клумба, которая также имеет форму квадрата. Площадь участка равна 100 м2. Сторона клумбы в два раза меньше стороны участка. Чему равна площадь клумбы?

22.1. Сократите дробь

22.2.

Кусок проволоки длиной 102 см нужно разрезать на части длиной 15 и 12 см так, чтобы не было обрезков. Как это сделать? Сколько решений имеет задача?

22.3.

В коробке лежат 7 красных и 5 синих карандашей. Из коробки в темноте берут карандаши. Сколько надо взять карандашей, чтобы среди них было не менее двух красных и трех синих?

22.4.

В одном сосуде литров воды, а другой пустой. Из 1-го сосуда переливают половину воды во 2-й,

затем из 2-го переливают воды в 1-й, затем из 1-го переливают воды во 2-й и т. Д. Сколько литров воды будет в первом сосуде после 1995 переливания?

8. Из числа …5960 вычеркнуть сто цифр так, чтобы полученное число было наибольшим.

23.1. Сначала отпили чашки черного кофе и долили ее молоком. Затем выпили чашки и снова долили ее молоком. Потом выпили еще полчашки и опять долили ее молоком. Наконец, выпили всю чашку. Чего выпили больше: кофе или молока?

23.2.

К трехзначному числу слева приписали 3 и оно увеличилось в 9 раз. Что это за число?

23.3.

Из пункта Ав пункт Вползут два жука и возвращаются обратно. Первый жук полз в обе стороны с одинаковой скоростью. Второй полз в Вв 1,5 раза быстрее, а обратно в 1,5 раза медленнее, чем первый. Какой жук вернулся в Араньше?

23.4.

Какое число больше: 2 379∙23 или 2 378∙23 ?

23.5.

Площадь квадрата равна 16 м2. Чему будет равна площадь квадрата, если:

а) сторону квадрата увеличить, в 2 раза?

Б) сторону квадрата увеличить в 3 раза?

В) сторону квадрата увеличить на 2 дм?

24.1. На какое число нужно умножить, чтобы получить число, которое записывается с помощью одних пятерок?

24.2.

Верно ли, что число 1 является квадратом некоторого натурального числа?

24.3.

Автомобиль из АвВехал со средней скоростью 50 км/ч, а обратно возвращался со скоростью 30 км/ч. Какова его средняя скорость?

24.4.

Докажите, что любую сумму из целого числа рублей, большую семи, можно уплатить без сдачи денежными купюрами в 3 и 5 руб.?

24.5.

На завод привезли бревна двух видов: длиной 6 и 7 м. Их нужно распилить на метровые чурбаки. Какие бревна выгоднее пилить?

25.1.Сумма нескольких чисел равна 1. Может ли сумма их квадратов быть меньше 0,01?

25.2.

Имеется 10 мешков монет. В девяти мешках монеты настоящие (весят по 10 г), а в одном – фальшивые (весят по 11 г). Одним взвешиванием на электронных весах определить, в каком мешке фальшивые монеты.

25.3.

Докажите, что сумма любых четырех последовательных натуральных чисел не делится на 4.

25.3.

Из числа …5960 вычеркните сто цифр так, чтобы полученное число было наименьшим.

25.4.

Купили несколько одинаковых книг и одинаковых альбомов. За книги заплатили 10 руб. 56 коп. Сколько купили книг, если цена одной книги более чем на рубль превышает цену альбома, а книг купили на 6 больше, чем альбомов.

26.1. Две противоположные стороны прямоугольника увеличили на их часть, а две другие уменьшили на часть. Как изменилась площадь прямоугольника?

26.2.

Десять команд участвуют в турнире по футболу. Доказать, что при любом расписании игр всегда найдутся две команды, сыгравшие одинаковое количество матчей.

26.3.

Самолет летит по прямой из города А в В, а затем обратно. Его собственная скорость постоянна. Когда самолет пролетит весь путь быстрее: при отсутствии ветра или при ветре, постоянно дующем в на правлении из А в В?

26.4.

Числа 100 и 90 разделили на одно я то же число. В первом случае получили в остатке 4, а во втором – 18. На какое число выполнялось деление?

26.5.

Шесть прозрачных колб с водой расставлены в два параллельных ряда по 3 колбы в каждом. На рис. 1 видны три передние колбы, а на рис. 2 – две правые боковые. Через прозрачные стенки колб видны уровни воды в каждой видимой колбе и во всех колбах, стоящих за ними. Определите, в каком порядке стоят колбы и какой уровень воды в каждой из них.

27.1.Бригада косцов в первый день скосила половину луга и еще 2 га, а во второй – 25% оставшейся части и последние 6 га. Найдите площадь луга.

27.2.

Имеется 11 мешков монет. В десяти мешках монеты настоящие (весят по 10 г), а в одном – фальшивые (весят по 11 г). Одним взвешиванием определить, в каком мешке фальшивые монеты.

27.3.

В ящике лежат 10 красных, 8 синих и 4 желтых карандаша. Из ящика в темноте берут карандаши. Какое наименьшее число карандашей надо взять, чтобы среди них заведомо было: а) не менее 4 карандашей одного цвета? Б) не менее 6 карандашей одного цвета? В) хотя бы 1 карандаш каждого цвета?

Г) не менее 6 синих карандашей?

27.4.

Вася сказал, что знает решение уравнения ху8+ х8у =1995 в натуральных числах. Докажите, что Вася ошибся.

27.5. Нарисуйте такой многоугольник и точку внутри него, чтобы ни одна сторона многоугольника не была видна из этой точки полностью (на рис. 3 из точки О не полностью видна сторона АВ).

28.1. Гриша с папой пошли в тир. Уговор был такой: Гриша делает 5 выстрелов и за каждое попадание в цель получает право сделать еще 2 выстрела. Всего Гриша сделал 17 выстрелов. Сколько раз он попал в цель?

28.2.

Лист бумаги разрезали на 4 части, затем некоторые (быть может, все) из этих частей тоже разрезали на 4 части и т. Д. Могло ли в результате получиться ровно 50 кусочков бумаги?

28.3.

Первую половину пути всадник скакал со скоростью 20 км/ч, а вторую – со скоростью 12 км/ч. Найти среднюю скорость всадника.

28.4.

Имеется 4 арбуза различной массы. Как, используя чашечные весы без гирь, не более чем за пять взвешиваний расположить их по возрастанию массы?

28.5.

Доказать, что нельзя провести прямую так, чтобы она пересекла все стороны 1001-угольника (не проходя при этом через его вершины).

29.1.Простое ля число 1 ?

29.2.

В одной бутылке белое вино, а в другой – красное. Капнем одну каплю красного вина в белое, а затем из полученной смеси вернем одну каплю в красное вино. Чего больше – белого вина в красном или красного вина в белом?

29.3.

Курьеры равномерно, но с разными скоростями двигаются изАвВнавстречу друг другу. После встречи для прибытия к месту назначения одному нужно было затратить еще 16 ч, а другому -9 ч. Сколько времени требуется каждому из них для прохождения всего пути от А до В?

29.4.

Что больше 3111 или 1714?

29.5.

а) Сумма сторон квадрата равна 40 дм. Чему равна площадь квадрата?

б) Площадь квадрата 64. Чему равен его периметр?

30.1. Можно ли число 203 представать в виде суммы нескольких слагаемых, произведение которых также равно 203?

30.2.

Сто городов соединено авиалиниями . Доказать, что среди них имеется два города, через которые проходит одинаковое количество авиалиний.

30.3.

Из четырех внешне одинаковых деталей одна отличается по массе от трех остальных, однако неизвестно, больше ее масса или меньше. Как выявить эту деталь двумя взвешиваниями на чашечных весах без гирь?

30.4.

На какую цифру оканчивается число

13 + 23 + … + 9993?

30.5.

Проведите 3 прямые так, чтобы тетрадный лист разделился на наибольшее число частей. Сколько получится частей? Проведите 4 прямые с тем же условием. Сколько теперь получилось частей?

РЕШЕНИЯ ЗАДАЧ

1.1. Проверкой убеждаемся: если числоумножить на 9,то в результате получится Вопрос учащимся: почему «проверять» следует только число 9?)

1.2.Если Аня едет в оба конца на автобусе, то весь путь занимает у нее 30 мин, следовательно, в один конец на автобусе она добирается за 15 мин. Если Аня идет в школу пешком, а обратно – на автобусе, то всего на дорогу она затрачивает 1,5 часа, значит, в один конец пешком она добирается за 1 ч 15 мин. Если же Аня и в школу, и из школы идет пешком, то на дорогу она тратит 2 ч 30 мин.

1.3.Так как картофель подешевел на 20%, то на весь купленный ранее картофель теперь надо истратить 80% имевшихся денег, а на оставшиеся 20% купить еще 1/4 часть картофеля, что составляет 25% . 4

1.4.Ход решения виден из таблицы:

в шаг

1-й шаг

2-й шаг

3-й ими

4-й шаг

5-й шаг

1.5. Для того чтобы обойти все 64 клетки шахмат­ной доски, побывав на каждом поле ровно один раз. Конь должен сделать 63 хода. При каждом ходе конь переходит с белого поля на черное (или с черного поля на белое), поэтому после ходов с четными номерами конь будет попадать на поля того же цвета, что и исходное, а после «нечетных» ходов – на поля, имеющие противоположный цвет. Поэтому конь не может на 63-м ходу попасть в правый верхний угол доски, так как он одинакового цвета с правым верхним.

Не удивительно, что занимательная математика стала развлечением «для всех времен и народов». Для решения таких задач не требуется никаких специальных знаний – достаточно одной догадки, которую, впрочем, порой найти труднее, чем методически решить стандартную школьную задачу.

Решение занимательной арифметической задачи.
Для 3 — 5 классов

Сколько драконов?

2-головые и 7-головые драконы собрались на митинг.
В самом начале митинга Король Драконов — 7-головый Дракон пересчитал всех собравшихся по головам.

Он огляделся вокруг своей, украшенной короной средней головы и увидел 25 голов.
Король остался доволен результатами подсчетов и поблагодарил всех присутствующих за их явку на митинг.

Сколько всего драконов пришло на митинг?

(a) 7; (b) 8; 9; (d) 10; (e) 11;
Решение:

Вычтем из 25 голов, подсчитанных Королем Драконов, 6 принадлежащих ему голов.

Останется 19 голов. Все оставшиеся Драконы не могут быть двуголовыми (19 — нечетное число).

7-головый Дракон может быть только 1 (если 2, то для двуголовых останется нечетное число голов. А для троих Драконов нехватает голов: (7 · 3 = 21 > 19).

Вычтем из 19 голов 7 голов этого единственного Дракона и получим общее количество голов, принадлежащих двуголовым Драконам.

Следовательно, 2-головых Драконов:
(19 — 7) / 2 = 6 Драконов.

Итого: 6 +1 +1 (Король) = 8 Драконов.

Правильный ответ:b = 8 Драконов

♦ ♦ ♦

Решение занимательной задачи по математике

Для 4 — 8 классов

Сколько побед?

Никита и Александр играют в шахматы.
Перед началом игры они договорились,

что выигравший партию получит 5 очков, проигравший не получит ни одного очка, и каждый игрок получит по 2 очка, если партия закончится вничью.

Они сыграли 13 игр и получили вместе 60 очков.
Александр получил втрое больше очков за те партии, которые он выиграл, чем за те, которые были вничью.

Сколько побед одержал Никита?

(a) 1; (b) 2; 3; (d) 4; (e) 5;
Правильный ответ:(b) 2 победы (одержал Никита)

Решение.

Каждая партия вничью дает в копилку 4 очка, а выигрыш — 5 очков.
Если бы все партии закончились вничью, то мальчики набрали бы 4 · 13 = 52 очка.
Но они набрали 60 очков.

Отсюда следует, что 8 партий были закончены чьим-то выигрышем.
А 13 — 5 = 5 партий завершились вничью.

Александр набрал в 5 партиях вничью 5 · 2 = 10 очков, значит при выигрыше он набрал 30 очков, то есть выиграл 6 партий.
Тогда Никита выиграл (8-6=2) 2 партии.

♦ ♦ ♦

Решение занимательной арифметической задачи

Для 4 — 8 классов

Сколько дней без пищи?
Марсианский межпланетный корабль прибыл с визитом на Землю.
Марсиане едят самое большое один раз в день, либо утром, либо в полдень, либо вечером.

Но едят они только тогда, когда испытывают чувство голода. Они могут обходится без пищи несколько дней.
За время пребывания Марсиан на Земле, они ели 7 раз.
Нам также известно, что они провели без пищи 7 раз утром, 6 раз в полдень и 7 вечеров.
Сколько всего дней за время своего визита Марсиане провели без пищи?

(a) 0 дней; (b) 1 день; 2 дня; (d) 3 дня; (e) 4 дня; (а) 5 дней;
Правильный ответ: 2 дня (марсиане провели без пищи)

Решение.
Марсиане ели 7 дней по одному разу в день, а число дней, когда они обедали, было на единицу больше числа дней, когда они завтракали или ужинали.

Исходя из этих данных, можно составить график приема пищи марсианами. Вероятная картина такая.

Инопланетяне в первый день обедали, во второй день ужинали, в третий завтракали, в четвертый обедали, в пятый ужинали, в шестой завтракали, в седьмой обедали.

То есть марсиане завтракали 2 дня, а 7 дней провели без завтрака, ужинали — 2 раза, а без ужина провели 7 дней, 3 раза обедали, а без обеда прожили 6 дней.

Итак, 7 + 2 = 9 и 6 + 3 = 9 дней. Значит прожили они на Земле 9 дней, а 2 из них обошлись без пищи (9 — 7 = 2) .

♦ ♦ ♦

Решение занимательной нестандартной задачи

Для 4 — 8 классов

Сколько времени?


Велосипедист и Пешеход покинули пункт А в одно и то же время и с постоянной скоростью направились в пункт В.
Велосипедист приехал в пункт В и тут же отправился в обратный путь и встретил Пешехода спустя час от того момента, когда они выехали из пункта А.
Здесь Велосипедист снова развернулся и они оба стали двигаться в направлении пункта В.

Когда велосипедист достиг пункта В, он снова повернул назад и снова встретил Пешехода через 40 минут после их первой встречи.
Чему равняется сумма цифр числа, выражающего время (в минутах), необходимое Пешеходу, чтобы из пункта А придти в пункт В?
(a) 2; (b) 14; 12; (d) 7; (e) 9.
Правильный ответ: е) 9 (сумма цифр числа 180 мин. — столько времени Пешеход путешествует из А в В)

Все становится понятным, если начертить чертеж.
Найдем разность двух путей Велосипедиста (один путь — от А до первой встречи (сплошная зеленая линия), второй путь — от первой встречи до второй (пунктирная зеленая линия)).

Получим, что эта разность в точности равна расстоянию от пункта А до второй встречи.
Это расстояние Пешеход проходит за 100 минут, а Велосипедист проезжает за 60 мин — 40 мин = 20 минут. Значит Велосипедист едет в 5 раз быстрее.

Обозначим расстояние от пункта А до точки, в которой произошла 1 встреча, за одну часть, а путь Велосипедиста до 1-ой встречи — за 5 частей.

Вместе они преодолели к моменту первой встречи двойное расстояния между пунктами А и Б, т. е. 5 + 1 = 6 частей.

Следовательно, от А до Б — 3 части. Пешеходу останется после первой встречи пройти еще 2 части до пункта В.

Все расстояние он пройдет за 3 часа или за 180 минут, так как 1 часть он проходит за 1 час.

Похожие публикации

ДАЛЬШЕ