Понятие производной смысл. Определение производной, её геометрический смысл
Копилка полезных уроков

Понятие производной смысл. Определение производной, её геометрический смысл

Математические задачи находят своё применение во многих науках. К таковым следует отнести не только физику, химию, технику и экономику, но также медицину, экологию и прочие дисциплины. Одним из важных понятий, которое следует освоить, чтобы находить решения важных дилемм, является производная функции. Физический смысл её объяснить совсем не так сложно, как может показаться непосвящённому в суть вопроса. Достаточно лишь найти подходящие примеры тому в реальной жизни и обычных бытовых ситуациях. На самом деле любой автомобилист справляется с подобной задачей каждый день, когда смотрит на спидометр, определяя скорость своей машины в конкретное мгновение фиксированного времени. Ведь именно в этом параметре заключена суть физического смысла производной.

Как найти скорость

Определить скорость движения человека по дороге, зная пройденное расстояние и время в пути, с лёгкостью может любой пятиклассник. Для этого следует первую из заданных величин разделить на вторую. Но не каждый из юных математиков знает о том, что в данный момент находит отношение приращений функции и аргумента. Действительно, если представить движение в виде графика, откладывая по оси ординат путь, а по абсциссе - время, это будет именно так.

Однако скорость пешехода или любого другого объекта, которую мы определяем на большом участке пути, считая движение равномерным, вполне может меняться. В физике известно множество форм движения. Оно может совершаться не только с постоянным ускорением, но замедляться и возрастать произвольным образом. Следует обратить внимание, что в данном случае линией, описывающей перемещение, будет уже не прямая. Графически она может принимать самые сложные конфигурации. Но для любой из точек графика мы всегда можем провести касательную, представленную линейной функцией.

Для уточнения параметра изменения перемещения в зависимости от времени приходится сокращать измеряемые отрезки. Когда же они станут бесконечно малыми, вычисляемая скорость окажется мгновенной. Данный опыт помогает нам дать определение производной. Физический смысл её также логически вытекает из подобных рассуждений.

С точки зрения геометрии

Известно, что чем больше скорость тела, тем круче график зависимости перемещения от времени, а значит, и угол наклона касательной к графику в какой-то определённой точке. Показателем подобных изменений может стать тангенс угла между осью абсцисс и линией касательной. Как раз он определяет значение производной и вычисляется отношением длин противолежащего к прилежащему катету в прямоугольном треугольнике, образованном перпендикуляром, опущенным из некоторой точки на ось абсцисс.

В этом заключается геометрический смысл первой производной. Физический же раскрывается в том, что величина противолежащего катета в нашем случае представляет собой пройденный путь, а прилежащего - время. При этом отношением их является скорость. И снова мы приходим к выводу, что мгновенная скорость, определяемая при стремлении обоих промежутков к бесконечно малому, и является сутью указывая на её физический смысл. Второй производной в данном примере будет ускорение тела, демонстрирующее, в свою очередь, степень изменения скорости.

Примеры нахождения производных в физике

Производная - это показатель скорости изменения любой функции, даже когда речь не идёт о движении в прямом смысле слова. Чтобы наглядно продемонстрировать это, приведём несколько конкретных примеров. Допустим, сила тока, завися от времени, изменяется согласно следующему закону: I= 0,4t 2 . Требуется найти значение скорости, с которой происходит изменение этого параметра в конце 8-й секунды процесса. Заметим, что сама искомая величина, как можно судить из уравнения, постоянно возрастает.

Для решения требуется найти первую производную, физический смысл которой был рассмотрен ранее. Здесь dI/dt= 0,8t. Далее найдём оную при t=8, получим, что скорость, с которой происходит изменение силы тока, равна 6,4A/c. Здесь считается, что сила тока измеряется в амперах, а время, соответственно, в секундах.

Всё изменчиво

Видимый окружающий мир, состоящий из материи, постоянно претерпевает изменения, находясь в движении протекающих в нём разнообразных процессов. Для описания их можно использовать самые разные параметры. Если они объединены зависимостью, то математически записываются в виде функции, наглядно показывающей их изменения. А где есть движение (в каком бы виде оно ни выражалось), там существует и производная, физический смысл которой мы и рассматриваем в настоящий момент.

По этому поводу следующий пример. Допустим, температура тела изменяется по закону T=0,2t2. Следует найти скорость его нагревания в конце 10-й секунды. Решение задачи производится способом, аналогичным описанному в предыдущем случае. То есть мы находим производную и подставляем в неё значение дляt= 10, получаем T= 0,4t= 4.Значит, окончательным ответом считается 4 градуса за секунду, то есть процесс нагревания и изменение температуры, измеряемой в градусах, происходит именно с такой скоростью.

Решение практических задач

Конечно, в реальной жизни всё бывает гораздо сложнее, чем в теоретических задачах. На практике значение величин определяется обычно в ходе эксперимента. При этом используются приборы, которые выдают показания при измерениях с определённой погрешностью. Поэтому при вычислениях приходится иметь дело с приближёнными значениями параметров и прибегать к округлениям неудобных чисел, а также другим упрощениям. Приняв это ко вниманию, снова приступим к задачам на физический смысл производной, учитывая, что они являются лишь некоей математической моделью происходящих в природе сложнейших процессов.

Извержение вулкана

Представим, что происходит извержение вулкана. Насколько он может быть опасен? Для выяснения этого вопроса необходимо рассмотреть множество факторов. Мы постараемся учесть один из них.

Из жерла "огненного чудовища" выбрасываются вертикально вверх камни, имеющие начальную скорость с момента выхода наружу Необходимо просчитать, какой они могут достигнуть максимальной высоты.

Для нахождения искомого значения составим уравнение зависимости высоты H, измеряемой в метрах, от прочих величин. К таковым относятся начальная скорость и время. Значение ускорения считаем известным и приблизительно равным 10 м/с 2 .

Частная производная

Рассмотрим теперь физический смысл производной функции немного с другой стороны, ведь само уравнение может содержать не одну, а несколько переменных. К примеру, в предыдущей задаче зависимость высоты подъёма камней, выбрасываемых из жерла вулкана, определялась не только изменением временных характеристик, но и значением начальной скорости. Последняя считалась постоянной, фиксированной величиной. Но в других задачах с совершенно иными условиями всё могло быть иначе. Если величин, от которых зависит сложная функция, несколько, расчёты производятся согласно указанным ниже формулам.

Физический смысл частой производной следует определять, как и в обычном случае. Это скорость изменения функции в некоторой определённой точке при росте параметра переменной. Она вычисляется таким образом, что все остальные составляющие принимаются за постоянные, лишь только один рассматривается как переменная. Далее всё происходит по обычным правилам.

Понимая физический смысл производной, примеры решения запутанных и сложных проблем, ответ в которых позволяют найти подобные знания, привести несложно. Если у нас есть функция, описывающая расход горючего в зависимости от скорости автомобиля, можем рассчитать, при каких параметрах последней расход бензина будет наименьшим.

В медицине можно предвидеть, каким образом будет реагировать человеческий организм на прописанное врачом лекарство. Приём препарата сказывается на самых разных физиологических показателях. К ним относятся изменения артериального давления, пульса, температуры тела и многого другого. Все они зависят от дозы принимаемого лекарственного средства. Данные расчёты помогают предвидеть ход лечения, как в благоприятных проявлениях, так и в нежелательных случайностях, способных фатальным образом отразиться на изменениях в организме больного.

Несомненно, важным оказывается понимание физического смысла производной в технических вопросах, в частности в электротехнике, электронике, конструировании и строительстве.

Тормозной путь

Рассмотрим очередную задачу. Двигаясь с постоянной скоростью, автомобиль, приближаясь к мосту, за 10 секунд до въезда вынужден был затормозить, так как водитель заметил дорожный знак, запрещающий движение со скоростью более 36 км/час. Не нарушил ли правила шофёр, если тормозной путь его можно описать формулой S = 26t - t 2 ?

Вычислив первую производную, найдём формулу для скорости, получим v = 28 - 2t. Далее подставим в указанное выражение значение t=10.

Так как эта величина была выражена в секундах, скорость оказывается равной 8 м/с, а значит, 28,8 км/час. Это даёт возможность понять, что шофёр начал тормозить вовремя и не нарушил правила движения, а значит, и предел указанной на знаке скорости.

Подобное доказывает важность физического смысла производной. Пример решения данной задачи демонстрирует широту использования этого понятия в самых разных сферах жизни. В том числе и в бытовых ситуациях.

Производная в экономике

До XIX столетия экономисты в основном оперировали средними величинами, будь то производительность труда или цена на выпускаемую продукцию. Но с некоторого момента для составления эффективных прогнозов в данной области больше стали необходимы предельные величины. К таковым можно отнести предельную полезность, доход или издержки. Понимание этого дало толчок к созданию совершенно нового инструмента в экономических исследованиях, который существует и развивается вот уже более ста лет.

Для составления подобных расчётов, где главенствуют такие понятия, как минимум и максимум, просто необходимо понимание геометрического и физического смысла производной. Среди создателей теоретической основы указанных дисциплин можно назвать таких видных английских и австрийских экономистов, как У. С. Джевонс, К. Менгер и других. Конечно, предельные величины в экономических выкладках не всегда использовать удобно. А, к примеру, квартальные отчёты не обязательно укладываются в существующую схему, но всё же применение подобной теории во многих случаях бывает полезно и эффективно.

Тема. Производная. Геометрический и механический смысл производной

Если этот предел существует, то функция называется дифференцируемой в точке. Производная функции обозначается (формула 2).

  1. Геометрический смысл производной. Рассмотрим график функции. Из рис.1 видно, что для любых двух точек A и B графика функции можно записать формула 3). В ней - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует вывод.

Производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

  1. Уравнение касательной . Выведем уравнение касательной к графику функции в точке. В общем случае уравнение прямой с угловым коэффициентом имеет вид: . Чтобы найти b, воспользуемся тем, что касательная проходит через точку A: . Отсюда следует: . Подставляя это выражение вместо b, получаем уравнение касательной (формула 4).

Для выяснения геометрического значения производной рассмотрим график функции y = f(x). Возьмем произвольную точку М с координатами (x, y) и близкую к ней точку N (x + $\Delta $x, y + $\Delta $y). Проведем ординаты $\overline{M_{1} M}$ и $\overline{N_{1} N}$, а из точки М -- параллельную оси ОХ прямую.

Отношение $\frac{\Delta y}{\Delta x} $ является тангенсом угла $\alpha $1, образованного секущей MN с положительным направлением оси ОХ. При стремлении $\Delta $х к нулю точка N будет приближаться к M, а предельным положением секущей MN станет касательная MT к кривой в точке M. Таким образом, производная f`(x) равна тангенсу угла $\alpha $, образованного касательной к кривой в точке M (х, y) с положительным направлением к оси ОХ -- угловому коэффициенту касательной (рис.1).

Рисунок 1. График функции

Вычисляя значения по формулам (1), важно не ошибиться в знаках, т.к. приращение может быть и отрицательным.

Точка N, лежащая на кривой, может стремиться к M с любой стороны. Так, если на рисунке 1, касательной придать противоположное направление, угол $\alpha $ изменится на величину $\pi $, что существенно повлияет на тангенс угла и соответственно угловой коэффициент.

Вывод

Следует вывод, что существование производной связано с существованием касательной к кривой y = f(x), а угловой коэффициент -- tg $\alpha $ = f`(x) конечный. Поэтому касательная не должна быть параллельной оси OY, иначе $\alpha $ = $\pi $/2, а тангенс угла будет бесконечным.

В некоторых точках непрерывная кривая может не иметь касательной или иметь касательную параллельную оси OY (рис.2). Тогда в этих значениях функция не может иметь производную. Подобных точек может быть сколько угодно много на кривой функции.

Рисунок 2. Исключительные точки кривой

Рассмотрим рисунок 2. Пусть $\Delta $x стремится к нулю со стороны отрицательных или положительных значений:

\[\Delta x\to -0\begin{array}{cc} {} & {\Delta x\to +0} \end{array}\]

Если в данном случае отношения (1) имеют конечный придел, он обозначается как:

В первом случае -- производная слева, во втором -- производная справа.

Существование предела говорит о равносильности и равенстве левой и правой производной:

Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.

Для точек N лежащих слева от M2, $\Delta $x $

Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $

Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.

Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.

Рисунок 3. Отсутствие производных

Пример 1

На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.

Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точкеB (x ; f (x )). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x ; ВС =∆у; tgβ =∆ y /∆ x .

Так как АС || Ox , то Ð ALO = Ð BAC = β (как соответственные при параллельных). НоÐ ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит,tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a ), называемая касательной к графику функции у =f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tg β =∆ y /∆ x , то получим

или tg a = f "(x 0 ), так как
a -угол накло­на касательной к положительному направлению оси Ох

, по определению производной. Но tga = k - угловой коэффициент каса­тельной, значит, k = tga = f "(x 0 ).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x (t ). Известно (из курса физики), что средняя скорость за промежуток времени [t 0 ; t 0 + ∆ t ] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

V ср = ∆ x /∆ t . Перейдем к пределу в последнем равенстве при ∆t → 0.

lim V ср (t ) = n (t 0 ) - мгновенная скорость в момент времениt 0 , ∆ t → 0.

а lim = ∆ x /∆ t = x "(t 0 ) (по определению производной).

Итак, n (t ) = x "(t ).

Физический смысл производной заключается в следующем: произ­водная функции y=f(x) в точкеx0- это скорость изменения функции f(х) в точкеx0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

u (t ) = x "(t ) - скорость,

a (f ) = n "(t ) - ускорение, или

a (t ) = x "(t ).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ (t ) - изменение угла от времени,

ω = φ "(t ) - угловая скорость,

ε = φ "(t ) - угловое ускорение, илиε = φ "(t ).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m (х) - масса,

x Î , l - длина стержня,

р = m "(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = - kx , x – переменная координата,k - коэффициент упругости пружины. Положивω 2 = k / m , получим дифференциальное уравнение пружинного маятника х"(t ) + ω 2 x(t ) = 0,

где ω = √ k /√ m частота колебаний (l / c ), k - жесткость пружины (H / m ).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin (ωt + φ 0 ) или у = Acos (ωt + φ 0 ), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Производной функции f (x) в точке х0 называется предел (если он существует) отношения приращения функции в точке х0 к приращению аргумента Δх, если прирост аргумента стремится к нулю и обозначается f ‘(x0). Действие нахождения производной функции называется дифференцированием.
Производная функции имеет такой физический смысл: производная функции в заданной точке - скорость изменения функции в заданной точке.

Геометрический смысл производной. Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Физический смысл производной.Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Понятие дифференциала, его свойства. Правила дифференцирования. Примеры.

Определение.

Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

или

Или же


Свойства дифференциала
Дифференциал обладает свойствами, аналогичными свойствам производной:





К основным правилам дифференцирования относят:
1) вынесение постоянного множителя за знак производной
2) производная суммы, производная разности
3) производная произведения функций
4) производная частного двух функций (производная дроби)

Примеры.

Докажем формулу: По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

Например: Найти производную функции
Решение:Воспользуемся правилом вынесения множителя за знак производной:

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы, воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Формулы дифференцирования. Применение дифференциала в приближенных вычислениях. Примеры.





Применение дифференциала в приближенных вычислениях позволяет использовать дифференциал для приближенных вычислений значений функции.
Примеры.
С помощью дифференциала вычислить приближенно
Для вычисления данного значения применим формулу из теории
Введем в рассмотрение функцию а заданную величину представим в виде
тогда Вычислим

Подставляя все в формулу, окончательно получим
Ответ:

16. Правило Лопиталя для раскрытия неопределенностей вида 0/0 Или ∞/∞. Примеры.
Предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

1)

17. Возрастание и убывание функции. Экстремум функции. Алгоритм исследования функции на монотонность и экстремум. Примеры .

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, большему значению аргумента соответствует большее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, большему значению аргумента соответствует меньшее значение функции, и её график идёт «сверху вниз». Наша убывает на интервалах убывает на интервалах .

Экстремумы

Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .
Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .
Под окрестностью точки понимают интервал , где - достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.

Чтобы исследовать функцию на монотонность, воспользуйтесь следующей схеме:
- Найдите область определения функции;
- Найдите производную функции и область определения производной;
- Найдите нули производной, т.е. значение аргумента, при которых производная равна нулю;
- На числовом лучи отметьте общую часть области определения функции и области определения ее производной, а на ней - нули производной;
- Определите знаки производной на каждом из полученных промежутков;
- По знакам производной определите, на которых промежутках функция возрастает, а на каких спадает;
- Запишите соответствующие промежутки через точку с запятой.

Алгоритм исследования непрерывной функции y = f(x) на монотонность и экстремумы:
1) Найти производную f ′(x).
2) Найти стационарные (f ′(x) = 0) и критические (f ′(x) не существует) точки функции y = f(x).
3) Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4) Сделать выводы о монотонности функции и ее точках экстремума.

18. Выпуклость функции. Точки перегиба. Алгоритм исследования функции на выпуклость (Вогнутость) Примеры.

выпуклой вниз

на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.


Точка формула называется точкой перегиба графика функции y=f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки формула, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Нахождение интервалов на выпуклость:

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство (), то график функции имеет выпуклость направленную вниз (вверх) на Х.
Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Пример

: Выяснить промежутки, на которых график функцииВыяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз. имеет выпуклость направленную вверх и выпуклость направленную вниз.
Решение: Областью определения этой функции является все множество действительных чисел.
Найдем вторую производную.


Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно. Следовательно, функция выпуклая вниз на интервале формула и выпуклая вверх на интервале формула.

19) Асимптоты функции. Примеры.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание.

Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание.

График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

ПРИМЕР:

Задание.

Найти асимптоты графика функции

Решение.

Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ.

Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

20) Общая схема исследования функции и построение графика. Пример.

a.
Найти ОДЗ и точки разрыва функции.

b. Найти точки пересечения графика функции с осями координат.

2. Провести исследование функции с помощью первой производной, то есть найти точки экстремума функции и интервалы возрастания и убывания.

3. Исследовать функцию с помощью производной второго порядка, то есть найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

4. Найти асимптоты графика функции: а) вертикальные, b) наклонные.

5. На основании проведенного исследования построить график функции.

Заметим, что перед построением графика полезно установить, не является ли данная функция четной или нечетной.

Вспомним, что функция называется четной, если при изменении знака аргумента значение функции не меняется: f(-x) = f(x) и функция называется нечетной, если f(-x) = -f(x).

В этом случае достаточно исследовать функцию и построить её график при положительных значениях аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy, а для нечетной относительно начала координат.

Примеры.

Исследовать функции и построить их графики.

Область определения функции D(у)= (–∞; +∞).Точек разрыва нет.

Пересечение с осью Ox: x = 0,у=0.

Функция нечетная, следовательно, можно исследовать ее только на промежутке }

Похожие публикации

ДАЛЬШЕ