Понятие сложной функции и правило ее дифференцирования. Производная степенно-показательной функции
Запомнить очень легко.
Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:
В нашем случае основанием служит число:
Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.
Чему равен? Конечно же, .
Производная от натурального логарифма тоже очень простая:
Примеры:
- Найди производную функции.
- Чему равна производная функции?
Ответы:
Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.
Правила дифференцирования
Правила чего? Опять новый термин, опять?!...
Дифференцирование
- это процесс нахождения производной.
Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.
При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:
Всего имеется 5 правил.
Константа выносится за знак производной.
Если - какое-то постоянное число (константа), тогда.
Очевидно, это правило работает и для разности: .
Докажем. Пусть, или проще.
Примеры.
Найдите производные функций:
- в точке;
- в точке;
- в точке;
- в точке.
Решения:
- (производная одинакова во всех точках, так как это линейная функция, помнишь?);
Производная произведения
Здесь все аналогично: введем новую функцию и найдем ее приращение:
Производная:
Примеры:
- Найдите производные функций и;
- Найдите производную функции в точке.
Решения:
Производная показательной функции
Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).
Итак, где - это какое-то число.
Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:
Для этого воспользуемся простым правилом: . Тогда:
Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.
Получилось?
Вот, проверь себя:
Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.
Примеры:
Найди производные функций:
Ответы:
Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.
Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:
В этом примере произведение двух функций:
Производная логарифмической функции
Здесь аналогично: ты уже знаешь производную от натурального логарифма:
Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :
Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:
Только теперь вместо будем писать:
В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:
Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.
Производная сложной функции.
Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».
Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.
Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.
Другими словами, сложная функция - это функция, аргументом которой является другая функция: .
Для нашего примера, .
Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.
Второй пример: (то же самое). .
Действие, которое делаем последним будем называть «внешней» функцией, а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).
Попробуй определить сам, какая функция является внешней, а какая внутренней:
Ответы:
Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции
- Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
А исходная функция является их композицией: . - Внутренняя: ; внешняя: .
Проверка: . - Внутренняя: ; внешняя: .
Проверка: . - Внутренняя: ; внешняя: .
Проверка: . - Внутренняя: ; внешняя: .
Проверка: .
производим замену переменных и получаем функцию.
Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:
Другой пример:
Итак, сформулируем, наконец, официальное правило:
Алгоритм нахождения производной сложной функции:
Вроде бы всё просто, да?
Проверим на примерах:
Решения:
1) Внутренняя: ;
Внешняя: ;
2) Внутренняя: ;
(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)
3) Внутренняя: ;
Внешняя: ;
Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.
То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.
В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:
Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:
Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.
1. Подкоренное выражение. .
2. Корень. .
3. Синус. .
4. Квадрат. .
5. Собираем все в кучу:
ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ
Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:
Базовые производные:
Правила дифференцирования:
Константа выносится за знак производной:
Производная суммы:
Производная произведения:
Производная частного:
Производная сложной функции:
Алгоритм нахождения производной от сложной функции:
- Определяем «внутреннюю» функцию, находим ее производную.
- Определяем «внешнюю» функцию, находим ее производную.
- Умножаем результаты первого и второго пунктов.
И теорему о производной сложной функции, формулировка которой такова:
Пусть 1) функция $u=\varphi (x)$ имеет в некоторой точке $x_0$ производную $u_{x}"=\varphi"(x_0)$, 2) функция $y=f(u)$ имеет в соответствующей точке $u_0=\varphi (x_0)$ производную $y_{u}"=f"(u)$. Тогда сложная функция $y=f\left(\varphi (x) \right)$ в упомянутой точке также будет иметь производную, равную произведению производных функций $f(u)$ и $\varphi (x)$:
$$ \left(f(\varphi (x))\right)"=f_{u}"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$
или, в более короткой записи: $y_{x}"=y_{u}"\cdot u_{x}"$.
В примерах этого раздела все функции имеют вид $y=f(x)$ (т.е. рассматриваем лишь функции одной переменной $x$). Соответственно, во всех примерах производная $y"$ берётся по переменной $x$. Чтобы подчеркнуть то, что производная берётся по переменной $x$, часто вместо $y"$ пишут $y"_x$.
В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.
Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.
Пример №1
Найти производную функции $y=e^{\cos x}$.
Нам нужно найти производную сложной функции $y"$. Так как $y=e^{\cos x}$, то $y"=\left(e^{\cos x}\right)"$. Чтобы найти производную $\left(e^{\cos x}\right)"$ используем формулу №6 из таблицы производных . Дабы использовать формулу №6 нужно учесть, что в нашем случае $u=\cos x$. Дальнейшее решение состоит в банальной подстановке в формулу №6 выражения $\cos x$ вместо $u$:
$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)" \tag {1.1}$$
Теперь нужно найти значение выражения $(\cos x)"$. Вновь обращаемся к таблице производных, выбирая из неё формулу №10. Подставляя $u=x$ в формулу №10, имеем: $(\cos x)"=-\sin x\cdot x"$. Теперь продолжим равенство (1.1), дополнив его найденным результатом:
$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x") \tag {1.2} $$
Так как $x"=1$, то продолжим равенство (1.2):
$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x")=e^{\cos x}\cdot (-\sin x\cdot 1)=-\sin x\cdot e^{\cos x} \tag {1.3} $$
Итак, из равенства (1.3) имеем: $y"=-\sin x\cdot e^{\cos x}$. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, - как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.
Ответ: $y"=-\sin x\cdot e^{\cos x}$.
Пример №2
Найти производную функции $y=9\cdot \arctg^{12}(4\cdot \ln x)$.
Нам необходимо вычислить производную $y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"$. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:
$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)" \tag {2.1} $$
Теперь обратимся к выражению $\left(\arctg^{12}(4\cdot \ln x) \right)"$. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: $\left(\left(\arctg(4\cdot \ln x) \right)^{12}\right)"$. Теперь видно, что необходимо использовать формулу №2, т.е. $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. В эту формулу подставим $u=\arctg(4\cdot \ln x)$ и $\alpha=12$:
Дополняя равенство (2.1) полученным результатом, имеем:
$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))" \tag {2.2} $$
В этой ситуации часто допускается ошибка, когда решатель на первом шаге выбирает формулу $(\arctg \; u)"=\frac{1}{1+u^2}\cdot u"$ вместо формулы $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. Дело в том, что первой должна находиться производная внешней функции. Чтобы понять, какая именно функция будет внешней для выражения $\arctg^{12}(4\cdot 5^x)$, представьте, что вы считаете значение выражения $\arctg^{12}(4\cdot 5^x)$ при каком-то значении $x$. Сначала вы посчитаете значение $5^x$, потом умножите результат на 4, получив $4\cdot 5^x$. Теперь от этого результата берём арктангенс, получив $\arctg(4\cdot 5^x)$. Затем возводим полученное число в двенадцатую степень, получая $\arctg^{12}(4\cdot 5^x)$. Последнее действие, - т.е. возведение в степень 12, - и будет внешней функцией. И именно с неё надлежит начинать нахождение производной, что и было сделано в равенстве (2.2).
Теперь нужно найти $(\arctg(4\cdot \ln x))"$. Используем формулу №19 таблицы производных, подставив в неё $u=4\cdot \ln x$:
$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)" $$
Немного упростим полученное выражение, учитывая $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.
$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)"=\frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" $$
Равенство (2.2) теперь станет таким:
$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" \tag {2.3} $$
Осталось найти $(4\cdot \ln x)"$. Вынесем константу (т.е. 4) за знак производной: $(4\cdot \ln x)"=4\cdot (\ln x)"$. Для того, чтобы найти $(\ln x)"$ используем формулу №8, подставив в нее $u=x$: $(\ln x)"=\frac{1}{x}\cdot x"$. Так как $x"=1$, то $(\ln x)"=\frac{1}{x}\cdot x"=\frac{1}{x}\cdot 1=\frac{1}{x}$. Подставив полученный результат в формулу (2.3), получим:
$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)"=\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot 4\cdot \frac{1}{x}=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}. $$
Напомню, что производная сложной функции чаще всего находится в одну строку, - как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.
Ответ: $y"=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}$.
Пример №3
Найти $y"$ функции $y=\sqrt{\sin^3(5\cdot9^x)}$.
Для начала немного преобразим функцию $y$, выразив радикал (корень) в виде степени: $y=\sqrt{\sin^3(5\cdot9^x)}=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$. Теперь приступим к нахождению производной. Так как $y=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$, то:
$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)" \tag {3.1} $$
Используем формулу №2 из таблицы производных , подставив в неё $u=\sin(5\cdot 9^x)$ и $\alpha=\frac{3}{7}$:
$$ \left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}-1} (\sin(5\cdot 9^x))"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" $$
Продолжим равенство (3.1), используя полученный результат:
$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" \tag {3.2} $$
Теперь нужно найти $(\sin(5\cdot 9^x))"$. Используем для этого формулу №9 из таблицы производных, подставив в неё $u=5\cdot 9^x$:
$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$
Дополнив равенство (3.2) полученным результатом, имеем:
$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)" \tag {3.3} $$
Осталось найти $(5\cdot 9^x)"$. Для начала вынесем константу (число $5$) за знак производной, т.е. $(5\cdot 9^x)"=5\cdot (9^x)"$. Для нахождения производной $(9^x)"$ применим формулу №5 таблицы производных, подставив в неё $a=9$ и $u=x$: $(9^x)"=9^x\cdot \ln9\cdot x"$. Так как $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Теперь можно продолжить равенство (3.3):
$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x. $$
Можно вновь от степеней вернуться к радикалам (т.е. корням), записав $\left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}$ в виде $\frac{1}{\left(\sin(5\cdot 9^x)\right)^{\frac{4}{7}}}=\frac{1}{\sqrt{\sin^4(5\cdot 9^x)}}$. Тогда производная будет записана в такой форме:
$$ y"=\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}. $$
Ответ: $y"=\frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}$.
Пример №4
Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.
В формуле №2 таблицы производных записана производная функции $u^\alpha$. Подставляя $\alpha=-1$ в формулу №2, получим:
$$(u^{-1})"=-1\cdot u^{-1-1}\cdot u"=-u^{-2}\cdot u"\tag {4.1}$$
Так как $u^{-1}=\frac{1}{u}$ и $u^{-2}=\frac{1}{u^2}$, то равенство (4.1) можно переписать так: $\left(\frac{1}{u} \right)"=-\frac{1}{u^2}\cdot u"$. Это и есть формула №3 таблицы производных.
Вновь обратимся к формуле №2 таблицы производных. Подставим в неё $\alpha=\frac{1}{2}$:
$$\left(u^{\frac{1}{2}}\right)"=\frac{1}{2}\cdot u^{\frac{1}{2}-1}\cdot u"=\frac{1}{2}u^{-\frac{1}{2}}\cdot u"\tag {4.2} $$
Так как $u^{\frac{1}{2}}=\sqrt{u}$ и $u^{-\frac{1}{2}}=\frac{1}{u^{\frac{1}{2}}}=\frac{1}{\sqrt{u}}$, то равенство (4.2) можно переписать в таком виде:
$$ (\sqrt{u})"=\frac{1}{2}\cdot \frac{1}{\sqrt{u}}\cdot u"=\frac{1}{2\sqrt{u}}\cdot u" $$
Полученное равенство $(\sqrt{u})"=\frac{1}{2\sqrt{u}}\cdot u"$ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения $\alpha$.
Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx:
Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f(x) = x 2 + (2x + 3) · e x · sin x. Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.
Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.
Производные элементарных функций
Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.
Итак, производные элементарных функций:
Название | Функция | Производная |
Константа | f(x) = C, C ∈ R | 0 (да-да, ноль!) |
Степень с рациональным показателем | f(x) = x n | n · x n − 1 |
Синус | f(x) = sin x | cos x |
Косинус | f(x) = cos x | − sin x (минус синус) |
Тангенс | f(x) = tg x | 1/cos 2 x |
Котангенс | f(x) = ctg x | − 1/sin 2 x |
Натуральный логарифм | f(x) = ln x | 1/x |
Произвольный логарифм | f(x) = log a x | 1/(x · ln a) |
Показательная функция | f(x) = e x | e x (ничего не изменилось) |
Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:
(C · f)’ = C · f ’.
В общем, константы можно выносить за знак производной. Например:
(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .
Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.
Производная суммы и разности
Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:
- (f + g)’ = f ’ + g ’
- (f − g)’ = f ’ − g ’
Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.
Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула — производная суммы.
f (x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.
Функция f(x) — это сумма двух элементарных функций, поэтому:
f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x + cos x;
Аналогично рассуждаем для функции g(x). Только там уже три слагаемых (с точки зрения алгебры):
g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).
Ответ:
f ’(x) = 2x + cos x;
g ’(x) = 4x · (x
2 + 1).
Производная произведения
Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:
(f · g) ’ = f ’ · g + f · g ’
Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.
Задача. Найти производные функций: f(x) = x 3 · cos x; g(x) = (x 2 + 7x − 7) · e x .
Функция f(x) представляет собой произведение двух элементарных функций, поэтому все просто:
f ’(x) = (x 3 · cos x)’ = (x 3)’ · cos x + x 3 · (cos x)’ = 3x 2 · cos x + x 3 · (− sin x) = x 2 · (3cos x − x · sin x)
У функции g(x) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g(x) представляет собой многочлен, и его производная — это производная суммы. Имеем:
g ’(x) = ((x 2 + 7x − 7) · e x)’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x)’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x + 9) · e x .
Ответ:
f ’(x) = x
2 · (3cos x − x · sin x);
g ’(x) = x(x + 9) · e
x
.
Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.
Если есть две функции f(x) и g(x), причем g(x) ≠ 0 на интересующем нас множестве, можно определить новую функцию h(x) = f(x)/g(x). Для такой функции тоже можно найти производную:
Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.
Задача. Найти производные функций:
В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:
По традиции, разложим числитель на множители — это значительно упростит ответ:
Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f(x) = sin x и заменить переменную x, скажем, на x 2 + ln x. Получится f(x) = sin (x 2 + ln x) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.
Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:
f ’(x) = f ’(t) · t ’, если x заменяется на t(x).
Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.
Задача. Найти производные функций: f(x) = e 2x + 3 ; g(x) = sin (x 2 + ln x)
Заметим, что если в функции f(x) вместо выражения 2x + 3 будет просто x, то получится элементарная функция f(x) = e x . Поэтому делаем замену: пусть 2x + 3 = t, f(x) = f(t) = e t . Ищем производную сложной функции по формуле:
f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t ’
А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:
f ’(x) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3
Теперь разберемся с функцией g(x). Очевидно, надо заменить x 2 + ln x = t. Имеем:
g ’(x) = g ’(t) · t ’ = (sin t)’ · t ’ = cos t · t ’
Обратная замена: t = x 2 + ln x. Тогда:
g ’(x) = cos (x 2 + ln x) · (x 2 + ln x)’ = cos (x 2 + ln x) · (2x + 1/x).
Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.
Ответ:
f ’(x) = 2 · e
2x + 3 ;
g ’(x) = (2x + 1/x) · cos (x
2 + ln x).
Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.
Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:
(x n)’ = n · x n − 1
Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.
Задача. Найти производную функции:
Для начала перепишем корень в виде степени с рациональным показателем:
f (x) = (x 2 + 8x − 7) 0,5 .
Теперь делаем замену: пусть x 2 + 8x − 7 = t. Находим производную по формуле:
f ’(x) = f ’(t) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.
Делаем обратную замену: t = x 2 + 8x − 7. Имеем:
f ’(x) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .
Наконец, возвращаемся к корням:
После предварительной артподготовки будут менее страшны примеры, с 3-4-5 вложениями функций. Возможно, следующие два примера покажутся некоторым сложными, но если их понять (кто-то и помучается), то почти всё остальное в дифференциальном исчислении будет казаться детской шуткой.
Пример 2
Найти производную функции
Как уже отмечалось, при нахождении производной сложной функции, прежде всего, необходимо правильноРАЗОБРАТЬСЯ во вложениях. В тех случаях, когда есть сомнения, напоминаю полезный приём: берем подопытное значение «икс», например, и пробуем (мысленно или на черновике) подставить данное значение в «страшное выражение».
1) Сначала нам нужно вычислить выражение , значит, сумма - самое глубокое вложение.
2) Затем необходимо вычислить логарифм:
4) Потом косинус возвести в куб:
5) На пятом шагу разность:
6) И, наконец, самая внешняя функция - это квадратный корень:
Формула дифференцирования сложной функции применятся в обратном порядке, от самой внешней функции, до самой внутренней. Решаем:
Вроде без ошибок:
1) Берем производную от квадратного корня.
2) Берем производную от разности, используя правило
3) Производная тройки равна нулю. Во втором слагаемом берем производную от степени (куба).
4) Берем производную от косинуса.
6) И, наконец, берем производную от самого глубокого вложения .
Может показаться слишком трудно, но это еще не самый зверский пример. Возьмите, например, сборник Кузнецова и вы оцените всю прелесть и простоту разобранной производной. Я заметил, что похожую штуку любят давать на экзамене, чтобы проверить, понимает студент, как находить производную сложной функции, или не понимает.
Следующий пример для самостоятельного решения.
Пример 3
Найти производную функции
Подсказка: Сначала применяем правила линейности и правило дифференцирования произведения
Полное решение и ответ в конце урока.
Настало время перейти к чему-нибудь более компактному и симпатичному.
Не редка ситуация, когда в примере дано произведение не двух, а трёх функций. Как найти производную от произведения трёх множителей?
Пример 4
Найти производную функции
Сначала смотрим, а нельзя ли произведение трех функций превратить в произведение двух функций? Например, если бы у нас в произведении было два многочлена, то можно было бы раскрыть скобки. Но в рассматриваемом примере все функции разные: степень, экспонента и логарифм.
В таких случаях необходимо последовательноприменить правило дифференцирования произведения два раза
Фокус состоит в том, что за «у» мы обозначим произведение двух функций: , а за «вэ» - логарифм: . Почему так можно сделать? А разве - это не произведение двух множителей и правило не работает?! Ничего сложного нет:
Теперь осталось второй раз применить правило к скобке :
Можно еще поизвращаться и вынести что-нибудь за скобки, но в данном случае ответ лучше оставить именно в таком виде - легче будет проверять.
Рассмотренный пример можно решить вторым способом:
Оба способа решения абсолютно равноценны.
Пример 5
Найти производную функции
Это пример для самостоятельного решения, в образце он решен первым способом.
Рассмотрим аналогичные примеры с дробями.
Пример 6
Найти производную функции
Здесь можно пойти несколькими путями:
Или так:
Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного , приняв за весь числитель:
В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить?
Приведём выражение числителя к общему знаменателю и избавимся от трёхэтажности дроби:
Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.
Более простой пример для самостоятельного решения:
Пример 7
Найти производную функции
Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм
Приводятся примеры вычисления производных с применением формулы производной сложной функции.
СодержаниеСм. также: Доказательство формулы производной сложной функции
Основные формулы
Здесь мы приводим примеры вычисления производных от следующих функций:
;
;
;
;
.
Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или ,
расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.
Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .
Простые примеры
Пример 1
Найти производную сложной функции
.
Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.
По формуле производной сложной функции имеем:
.
Здесь .
Пример 2
Найти производную
.
Выносим постоянную 5 за знак производной и из таблицы производных находим:
.
.
Здесь .
Пример 3
Найдите производную
.
Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.
Применяем формулу производной сложной функции:
.
Здесь .
Более сложные примеры
В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.
Пример 4
Найдите производную
.
Выделим самую простую часть формулы и найдем ее производную. .
.
Здесь мы использовали обозначение
.
Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.
Еще раз применяем правило дифференцирования сложной функции.
.
Здесь .
Пример 5
Найдите производную функции
.
Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .
Применяем правило дифференцирования сложной функции.
.
Здесь
.
Дифференцируем следующую часть, применяя полученные результаты.
.
Здесь
.
Дифференцируем следующую часть.
.
Здесь
.
Теперь находим производную искомой функции.
.
Здесь
.