Равнодействующая системы сходящихся сил. Законы сложения сил в механике Найти величину равнодействующей силы
Копилка полезных уроков

Равнодействующая системы сходящихся сил. Законы сложения сил в механике Найти величину равнодействующей силы

Когда говорят о равнодействующей, то имеют в виду силу, которая равна действию двух или более сил, одновременно приложенных к телу.

Когда на тело действует несколько сил, то их совместный эффект может быть различным, он зависит как от направления разных сил, так и от их числовых значений. В любом случае всегда можно найти одну равнодействующую им силу.

Например, на батут положили кирпич. На кирпич действуют две силы - сила тяжести и сила упругости батута. В момент, когда кирпич только положили, сила тяжести была больше, чем сила упругости, и кирпич двигался вниз. Как только силы сравнялись, кирпич остановился.

Если бы кирпич не клали на батут, а бросили со всей силы сверху, то он бы двигался вниз не только под действием силы тяжести, но и переданной ему силы броска. Под действием этих двух сил батут бы прогнулся сильнее, так как сила упругости, которая уравновесит эти силы, должна быть больше.

Когда равновесие сил будет достигнуто, и движение остановится, то равновесие снова нарушится, так как на кирпич уже не будет действовать сила броска, а только силы тяжести и упругости. Но ведь сила упругости была достигнута не только за счет веса кирпича, но за счет силы броска. Поэтому сила упругости будет больше силы тяжести, и кирпич подпрыгнет, то есть начнет двигаться вверх.

В самых простых случаях рассматривают равнодействующую сил, направленных либо в одну сторону, либо противоположно.

Если две силы, действующие на тело, направлены в одну сторону, то равнодействующая им будет равна их сумме: F 1 + F 2 . Например, если тело толкают в одну сторону две силы в 10 Н и 20 Н, то равнодействующая сила этим двум будет равна 30 Н.

Если две силы, действующие на тело, направлены в противоположные стороны, то равнодействующая им равна модулю разности между силами и направлена в сторону большей: |F 1 – F 2 |. Например, если одна сила в 10 Н толкает тело влево, а другая сила в 15 Н - вправо, то тело будет двигаться вправо под действием силы в 5 Н (|10 – 15| = 5).

Когда силы направлены противоположно, но равны по численному значению, то равнодействующая им будет равна нулю. Это значит, что равнодействующая сила не оказывает никакого влияния на тело. Если тело находилось в покое, оно в нем и останется. Если тело двигалось прямолинейно и равномерно, оно так и продолжит двигаться. Таким образом, хотя две новые силы подействовали на тело, они «взаимно уничтожились».

Допустим, на тело действуют три силы, две из которых направлены в одну сторону, а третья в другую. В этом случае сначала надо найти равнодействующую двух сил, направленных в одну сторону, сложив их. Потом сравнить ее с третьей силой, чтобы определить в какую сторону будет направлена равнодействующая трех сил. И найти модуль разности между суммой первых двух и третьей: |F 1 + F 2 – F 3 |.

В данной статье рассказано о том, как найти модуль равнодействующей сил, действующих на тело. Репетитор по математике и физике объяснит вам, как найти суммарный вектор равнодействующей сил по правилу параллелограмма, треугольника и многоугольника. Материал разобран на примере решения задачи из ЕГЭ по физике.

Как найти модуль равнодействующей силы

Напомним, что сложить векторы геометрически можно с помощью одного из трех правил: правила параллелограмма, правила треугольника или правила многоугольника. Разберём каждое из этих правил в отдельности.

1. Правило параллелограмма. На рисунке по правилу параллелограмма складываются векторы и . Суммарный вектор есть вектор :

Если векторы и не отложены от одной точки, нужно заменить один из векторов равным и отложить его от начала второго вектора, после чего воспользоваться правилом параллелограмма. Например, на рисунке вектор заменен на равный ему вектор , и :

2. Правило треугольника. На рисунке по правилу треугольника складываются векторы и . В сумме получается вектор :

Если вектор отложен не от конца вектора , нужно заменить его равным и отложенным от конца вектора , после чего воспользоваться правилом треугольника. Например, на рисунке вектор заменен равным ему вектором , и :

3. Правило многоугольника. Для того, чтобы сложить несколько векторов по правилу параллелограмма, необходимо от произвольной точки отложить вектор, равный первому складываемому вектору, от его конца отложить вектор, равный второму складываемому вектору, и так далее. Суммарным будет вектор, проведенный из точки в конец последнего отложенного вектора. На рисунке :

Задача на нахождение модуля равнодействующей силы

Разберем задачу на нахождение равнодействующей сил на конкретном примере из демонстрационного варианта ЕГЭ по физике 2016 года.

Для нахождения вектора равнодействующей сил найдём геометрическую (векторную) сумму всех изображенных сил, используя правило многоугольника. Упрощенно говоря (не вполне корректно с математической точки зрения), каждый последующий вектор нужно отложить от конца предыдущего. Тогда суммарный вектор будет исходить из точки, из который отложен первоначальный вектор, и приходить в точку, где заканчивается последний вектор:

Требуется найти модуль равнодействующей сил, то есть длину получившегося вектора. Для этого рассмотрим вспомогательный прямоугольный треугольник :

Требуется найти гипотенузу этого треугольника. «По клеточкам» находим длину катетов: Н, Н. Тогда по теореме Пифагора для этого треугольника получаем: Н. То есть искомый модуль равнодействующей сил равен Н.

Итак, сегодня мы разобрали, как находить модуль равнодействующей силы. Задачи на нахождение модуля равнодействующей силы встречаются в вариантах ЕГЭ по физике. Для решения этих задач необходимо знать определение равнодействующей сил, а также уметь складывать векторы по правилу параллелограмма, треугольника или многоугольника. Стоит немного потренироваться, и вы научитесь решать эти задачи легко и быстро. Удачи вам в подготовке к ЕГЭ по физике!


Сергей Валерьевич

Игорь Бабин (спб)

14.05.2012 17:33

в условии написано,что нужно найти вес тела.

а в решении модуль силы тяжести.

Как вес может измеряться в Ньютонах.

В условии ошибка(

Алексей (Санкт-Петербург)

Добрый день!

Вы путаете понятия массы и веса. Весом тела называется сила (а потому вес измеряется в Ньютонах), с которой тело давит на опору или растягивает подвес. Как следует из определения, эта сила приложена даже не к телу, а к опоре. Невесомость - это состояние, когда у тела пропадает не масса, а вес, то есть тело перестает давить на другие тела.

Согласен, в решении была допущена некоторая вольность в определениях, сейчас она поправлена.

Юрий Шойтов (Курск)

26.06.2012 21:20

Понятие "вес тела" введен в учебную физику крайне неудачно. Если в бытовом понятии вес обозначает массу то в школьной физике, как вы правильно заметили весом тела называется сила (а потому вес измеряется в Ньютонах), с которой тело давит на опору или растягивает подвес. Заметим, что речь идет об одной опоре и об одной нити. Если опор или нитей несколько несколько, понятие веса исчезает.

Привожу пример. Пусть в жидкости на нити подвешено тело. Оно растягивает нить и давит на жидкость с силой равной минус сила Архимеда. Почему же, говоря о весе тела в жидкости, мы не складываем эти силы, как Вы делаете в своем решении?

Я зарегистрировался на Вашем сайте, но не заметил, что же изменилось в нашем общении. Прошу извинить мою тупость, но я, будучи человеком старым, недостаточно свободно ориентируюсь на сайте.

Алексей (Санкт-Петербург)

Добрый день!

Действительно, понятие веса тела весьма расплывчато, когда тело имеет несколько опор. Обычно вес в этом случае определяют как сумму взаимодействий со всеми опорами. При этом воздействие на газообразные и жидкие среды, как правило, исключается. Это как раз подпадает под описанный Вами пример, с подвешенным в воде грузиком.

Здесь сразу вспоминается детская задачка: "Что весит больше: килограмм пуха или килограмм свинца?" Если решать эту задачу по-честному, то нужно несомненно учитывать силу Архимеда. А под весом скорее всего мы будем понимать то, что нам будут показывать весы, то есть силу, с которой пух и свинец давят, скажем, на чашку весов. То есть здесь сила взаимодействие с воздухом как бы из понятия веса исключается.

С другой стороны, если считать, что мы откачали весь воздух и кладем на весы тело, к которому привязана веревочка. То сила тяжести будет уравновешиваться суммой силы реакции опоры и силой натяжения нити. Если мы понимаем вес как силу действия на опоры, препятствующие падению, то вес тут будет равен этой сумме силы растяжения нити и силы давления на чашку весов, то есть совпадать по величине с силой тяжести. Опять возникает вопрос: чем нитка лучше или хуже силы Архимеда?

В целом тут можно договориться до того, что понятие веса имеет смысл только в пустом пространстве, где есть только одна опора и тело. Как тут быть, это вопрос терминологии, которая, к сожалению, у каждого здесь своя, поскольку не столь уж это и важный вопрос:) И если силой Архимеда в воздухе во всех обычных случаях можно пренебречь, а значит, на величину веса она особо повлиять не может, то для тела в жидкости это уже критично.

Если уж быть совсем честным, то разделение сил на виды весьма условно. Представим себе ящик, который тащат по горизонтальной поверхности. Обычно говорят, что на ящик действуют две силы со стороны поверхности: сила реакции опоры, направленная вертикально, и сила трения, направленная горизонтально. Но ведь это две силы, действующие между одними и теми же телами, почему же мы просто не рисуем одну силу, являющуюся их векторной суммой (так, кстати, иногда и делается). Тут, это, наверное, вопрос удобства:)

Так что я немного в замешательстве, что делать с данной конкретной задачей. Проще всего, наверное, переформулировать ее и задавать вопрос про величину силы тяжести.

Не переживайте, все в порядке. При регистрации Вы должны были указать e-mail. Если теперь зайти на сайт под своим аккаунтом, то при попытке оставить комментарий в окне "Ваш e-mail" должен сразу появляться тот самый адрес. После этого система будет автоматически подписывать Ваши сообщения.

Сила выступает в качестве количественной меры взаимодействия тел. Это важная физическая величина, так как в инерциальной системе отсчета любое изменение скорости тела может происходить только при взаимодействии с другими телами. Иначе говоря, при действии на тело силы.

Взаимодействия тел могут иметь разную природу, например, существуют электрические, магнитные, гравитационные и другие взаимодействия. Но при исследовании механического движения тела природа сил, вызывающих у тела ускорение значения не имеет. Проблемой происхождения взаимодействия механика не занимается. Для любого взаимодействия численной мерой становится сила. Силы разной природы измеряют в одних единицах (в Международной системе единиц в ньютонах), при этом используют одни и те же эталоны. В виду такой универсальности механика занимается исследованием и описанием движения тел, которые испытывают воздействия сил любой природы.

Результатом действия силы на тело является ускорение тела (изменение скорости его движения) или (и) его деформация.

Сложение сил

Сила - это векторная величина. Кроме модуля она имеет направление и точку приложения. Независимо от природы все силы складываются как векторы.

Пусть, металлический шарик удерживается упругой пружиной и его притягивает магнит(рис.1). Тогда на него действуют две силы: сила упругости со стороны пружины (${\overline{F}}_u$) и магнитная сила (${\overline{F}}_m$) со стороны магнита. Считаем, что их величины известны. При совместном действии данных, сил шарик будет находиться в состоянии покоя, если на него воздействовать третьей силой ($\overline{F}$), которая удовлетворяет равенству:

\[\overline{F}=-\left({\overline{F}}_u+{\overline{F}}_m\right)\left(1\right).\]

Этот опыт дает возможность сделать вывод о том, что несколько сил, действующих на одно тело можно заменить одной равнодействующей, при этом не важна природа сил. Равнодействующая получается как результат векторного суммирования сил, действующих на тело.

Определение и формула равнодействующей силы

И так, векторная сумма всех сил, оказывающих действие на тело в один и тот же момент времени, называют равнодействующей силой ($\overline{F}$):

\[\overline{F}={\overline{F}}_1+{\overline{F}}_2+\dots +{\overline{F}}_N=\sum\limits^N_{i=1}{{\overline{F}}_i}\ \left(2\right).\]

Иногда равнодействующую силу обозначают $\overline{R}$, чтобы выделить, но это не обязательно.

Суммирование сил можно проводить графически. При этом используют правила многоугольника, параллелограмм и треугольника. Если при таком сложении сил многоугольник получился замкнутым, то равнодействующая равна нулю. При равенстве нулю равнодействующей систему называют уравновешенной.

Запись второго закона Ньютона с использованием равнодействующей силы

Второй закон Ньютона является основным законом в классической динамике. Он связывает силы, оказывающие воздействие на тело и его ускорение и позволяет решать основную задачу динамики. Если тело оказывается под воздействием нескольких сил, то второй закон Ньютона записываю так:

\[\overline{R}=\sum\limits^N_{i=1}{{\overline{F}}_i}=m\overline{a}\left(3\right).\]

Формула (3) означает, что равнодействующая всех сил, приложенных к телу, может быть равна нулю, в том случае, если происходит взаимная компенсация сил. Тогда тело перемещается с постоянной скоростью или находится в состоянии покоя в инерциальной системе отсчета. Можно сказать обратное, если тело движется равномерно и прямолинейно в инерциальной системе отсчета, то на него не действуют силы или их равнодействующая равна нулю.

При решении задач и указании на схемах сил, действующих на тело, при движении тела с постоянным ускорением, равнодействующую силу направляют по ускорению и изображают длиннее, чем противоположно ей направленную силу (сумму сил). При равномерном движении (или если тело находится в состоянии покоя) длина векторов сил, имеющих противоположные направления одинакова (равнодействующая равна нулю).

Исследуя условия задачи, необходимо определить, какие силы оказывают действие на тело, будут учитываться в равнодействующей, какие силы не оказывают существенного влияния на движение тела и их можно отбросить. Значимые силы изображают на рисунке. Складывают силы по правилам сложения векторов.

Примеры задач с решением

Пример 1

Задание.

Под каким углом должны быть расположены силы на рис. 2, чтобы их равнодействующая была равна по модулю каждой из составляющих ее сил?

Решение.

Для решения задачи воспользуемся теоремой косинусов:

Так как по условию задачи:

то выражение (1.1) преобразуем к виду:$\ $

Решением полученного тригонометрического уравнения являются углы:

\[\alpha =\frac{2\pi }{3}+\pi n\ ;;\ \alpha =\frac{4\pi }{3}+\pi n\ \left(где\ n-целое\ число\right).\ \]

Исходя из рисунка (рис.2) нам подходит ответ $\alpha =\frac{2\pi }{3}$.

Ответ.

$\alpha =\frac{2\pi }{3}$

Пример 2

Задание.

Чему равна равнодействующая сила, если на тело действуют силы, представленные на рис.3.

Решение.

Равнодействующую силу найдем векторным суммирование используя правило многоугольника. Последовательно каждый следующий вектор силы отложим от конца предыдущего. В результате вектор равнодействующей всех сил будет иметь началом точку, из которой выходит первый вектор (у нас вектор ${\overline{F}}_1$), ее конец будет приходить в точку, где заканчивается последний вектор (${\overline{F}}_4$). В результате получим рис.4.

В результате построения получен замкнутый многоугольник, это означает, что равнодействующая сил, приложенных к телу равна нулю.

Ответ.

$\overline{R}=0$

Похожие публикации

ДАЛЬШЕ