Разность одинаковых оснований с разными степенями. Правила вычитания и сложения степеней
Статьи по естественным наукам и математике
Свойства степеней с одинаковыми основаниями
Существует три свойства степеней с одинаковыми основаниями и натуральными показателями. Это
- Произведение сумма
- Частное двух степеней с одинаковыми основаниями равно выражению, где основание то же самое, а показатель есть разность показателей исходных множителей.
- Возведение степени числа в степень равно выражению, в котором основание - это то же самое число, а показатель - это произведение двух степеней.
Будьте внимательны! Правил относительно сложения и вычитания степеней с одинаковыми основаниями не существует.
Запишем эти свойства-правила в виде формул:
- a m ? a n = a m+n
- a m ? a n = a m–n
- (a m) n = a mn
Теперь рассмотрим их на конкретных примерах и попробуем доказать.
5 2 ? 5 3 = 5 5 - здесь мы применили правило; а теперь представим как бы мы решали этот пример, если бы не знали правила:
5 2 ? 5 3 = 5 ? 5 ? 5 ? 5 ? 5 = 5 5 - пять в квадрате - это пять умноженное на пять, а в кубе - произведение трех пятерок. В результате получилось произведение пяти пятерок, но это нечто иное как пять в пятой степени: 5 5 .
3 9 ? 3 5 = 3 9–5 = 3 4 . Запишем деление в виде дроби:
Ее можно сократить:
В результате получим:
Таким образом мы доказали, что при делении двух степеней с одинаковыми основаниями, их показатели надо вычитать.
Однако при делении нельзя, чтобы делитель был равен нулю (так как на ноль делить нельзя). Кроме того, поскольку мы рассматриваем степени только с натуральными показателями, то не можем в результате вычитания показателей получить число меньше, чем 1. Поэтому на формулу a m ? a n = a m–n накладываются ограничения: a ? 0 и m > n.
Перейдем к третьему свойству:
(2 2) 4 = 2 2?4 = 2 8
Запишем в развернутом виде:
(2 2) 4 = (2 ? 2) 4 = (2 ? 2) ? (2 ? 2) ? (2 ? 2) ? (2 ? 2) = 2 ? 2 ? 2 ? 2 ? 2 ? 2 ? 2 ? 2 = 2 8
Можно прийти к такому выводу и логически рассуждая. Нужно перемножить два в квадрате четыре раза. Но в каждом квадрате две двойки, значит всего двоек будет восемь.
scienceland.info
Правила сложения и вычитания.
1. От перемены мест слагаемых сумма не изменится (коммутативное свойство сложения)
13+25=38, можно записать как: 25+13=38
2. Результат сложения не изменится, если соседние слагаемые заменить их суммой (ассоциативное свойство сложения).
10+13+3+5=31 можно записать как: 23+3+5=31; 26+5=31; 23+8=31 и т.д.
3. Единицы складываются с единицами, десятки с десятками и т.д.
34+11=45 (3 десяка плюс еще 1 десяток; 4 единицы плюс 1 единица).
4. Единицы вычитаются из единиц, десятки из десятков и т.д.
53-12=41 (3 единицы минус 2 единицы; 5 десятков минус 1 десяток)
примечание: 10 единиц составляют один десяток. Это надо помнить при вычитании, т.к. если количество единиц у вычитаемого больше, чем у уменьшаемого, то мы можем «занять» один десяток у уменьшаемого.
41-12=29 (Для того чтобы и 1 вычесть 2, мы сначала должны «занять» единицу у десятков, получаем 11-2=9; помним, что у уменьшаемого остается на 1 десяток меньше, следовательно, остается 3 десятка и от него отнимается 1 десяток. Ответ 29).
5. Если из суммы двух слагаемых вычесть одно из них, то получится второе слагаемое.
Это значит, что сложение можно проверить с помощью вычитания.
Для проверки из суммы вычитают одно из слагаемых: 49-7=42 или 49-42=7
Если в результате вычитания вы не получили одно из слагаемых, значит в вашем сложении была допущена ошибка.
6. Если к разности прибавить вычитаемое, то получится уменьшаемое.
Это значит, что вычитание можно проверить сложением.
Для проверки к разности прибавим вычитаемое: 19+50=69.
Если в результате описанной выше процедуры вы не получили уменшьшаемое, значит в вашем вычитании была допущена ошибка.
Сложение и вычитание рациональных чисел
В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.
Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби, где a – это числитель дроби, b – знаменатель дроби. Причем b не должно быть нулём.
В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием - рациональные числа.
Навигация по уроку:
Пример 1.
Найти значение выражения
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении является знаком операции и не относится к дроби. У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:
Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший, и перед полученным ответом поставить тот знак, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:
Модуль рационального числа больше, чем модуль рационального числа. Поэтому мы из вычли . Получили ответ. Затем сократив эту дробь на 2, получили окончательный ответ .
При желании некоторые примитивные действия, такие как заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:
Пример 2.
Найти значение выражения
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который дан в выражении является знаком операции и не относится к дроби.
Дробь в данном случае является положительным рациональным числом, имеющим знак плюса, который невидим. Но мы запишем его для наглядности:
Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число противоположное вычитаемому:
Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:
Пример 3.
Найти значение выражения
В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к одинаковому (общему) знаменателю. Не будем подробно останавливаться на этом. Если испытываете трудности, обязательно вернитесь к уроку действия с дробями и повторите его.
После приведения дробей к общему знаменателю выражение примет следующий вид:
Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший и перед полученным ответом ставим тот знак, модуль которого больше:
Пример 4.
Найти значение выражения
Получили сумму из трёх слагаемых. Сначала найдём значение выражения, затем к полученному ответу прибавим
Первое действие:
Второе действие:
Таким образом, значение выражения равно.
Решение для данного примера можно записать покороче
Пример 5
. Найти значение выражения
Заключим каждое число в скобки вместе со своими знаками. Для этого смешанное число временно развернём
Вычислим целые части:
В главном выражении вместо запишем полученную единицу:
Полученное выражение свернём. Для этого опустим скобки и запишем единицу и дробь вместе
Решение для данного примера можно записать покороче:
Пример 6.
Найти значение выражения
Переведём смешанное число в неправильную дробь. Остальную часть перепишем как есть:
Заключим каждое рациональное число в скобки вместе со своими знаками:
Заменим вычитание сложением:
Получили сложение отрицательных рациональных чисел. Сложим модули этих чисел и перед полученным ответом поставим минус:
Таким образом, значение выражения равно .
Решение для данного примера можно записать покороче:
Пример 7.
Найти значение выражение
Запишем смешанное число в развёрнутом виде. Остальное перепишем как есть:
Заключим каждое рациональное число в скобки вместе своими знаками
Заменим вычитание сложением там, где это можно:
Вычислим целые части:
В главном выражении вместо запишем полученное число?7
Выражение является развёрнутой формой записи смешанного числа . Можно сразу записать ответ, записав вместе числа?7 и дробь (спрятав минус этой дроби)
Таким образом, значение выражения равно
Решение для данного примера можно записать значительно короче. Если пропустить некоторые подробности, то его можно записать следующим образом:
Пример 8.
Найти значение выражения
Данное выражение можно вычислить двумя способами. Рассмотрим каждый из них.
Первый способ.
Целые и дробные части выражения вычисляются по отдельности.
Для начала запишем смешанные числа в развёрнутом виде:
Заключим каждое число в скобки вместе со своими знаками:
Заменим вычитание сложением там, где это можно:
Получили сумму из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение содержит несколько слагаемых, то сумма не будет зависеть от порядка действий. Это позволит нам сгруппировать целые и дробные части по отдельности:
Вычислим целые части:
В главном выражении вместо запишем полученное число?3
Вычислим дробные части:
В главном выражении вместо запишем полученное смешанное число
Чтобы вычислить получившееся выражение, смешанное число нужно временно развернуть, затем заключить в скобки каждое число и заменить вычитание сложением. Делать это нужно очень аккуратно, чтобы не перепутать знаки слагаемых.
После преобразования выражения мы получили новое выражение , которое легко вычисляется. Похожее выражение было в примере 7. Напомним, что мы отдельно сложили целые части, а дробную оставили как есть:
Значит значение выражения равно
Решение для данного примера можно записать покороче
В коротком решении пропускаются этапы заключения чисел в скобки, замена вычитания сложением, проставление модулей. Если вы учитесь в школе или в другом учебном заведении, то от вас будут требовать пропускать эти примитивные действия, чтобы сэкономить время и место. Приведённое выше короткое решение можно записать ещё короче. Выглядеть оно будет так:
Поэтому, находясь в школе или в ином учебном заведении, будьте готовы к тому, что некоторые действия придётся выполнять в уме.
Второй способ.
Смешанные числа выражения переводят в неправильные дроби и вычисляют, как обычные дроби.
Заключим в скобки каждое рациональное число вместе со своими знаками
Заменим вычитание сложением:
Теперь смешанные числа и переведём в неправильные дроби:
Получили сложение отрицательных рациональных чисел. Сложим их модули и перед полученным ответом поставим минус:
Получили ответ как и в прошлый раз.
Подробное решение вторым способом выглядит следующим образом:
Пример 9.
Найти выражения выражения
Первый способ.
Сложим целые и дробные части по отдельности.
В этот раз попробуем пропустить некоторые примитивные действия, такие как запись выражения в развёрнутом виде, заключение чисел в скобки, замена вычитания сложением, проставление модулей:
Обратите внимание, что дробные части были приведены к общему знаменателю.
Второй способ.
Переведём смешанные числа в неправильные дроби и вычислим, как обычные дроби.
Пример 10.
Найти значение выражения
Заменим вычитание сложением:
В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки. Тогда получим простейшее выражение, которое вычисляется легко:
В данном примере целые и дробные части были вычислены по отдельности.
Пример 11.
Найти значение выражения
Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший и перед полученными числом поставим тот знак, модуль которого больше:
Пример 12.
Найти значение выражения
Выражение состоит из нескольких параметров. Согласно порядку действий, в первую очередь необходимо выполнить действия в скобках.
Сначала вычислим выражение , затем выражение Полученные ответы сложим.
Первое действие:
Второе действие:
Третье действие:
Ответ:
значение выражения равно
Пример 13.
Найти значение выражения
Заменим вычитание сложением:
Получили сложением рациональных чисел с разными знаками. Вычтем из большего модуля меньший и перед ответом поставим тот знак, модуль которого больше. Но мы имеем дело со смешанными числами. Чтобы понять какой модуль больше, а какой меньше, нужно сравнить модули этих смешанных чисел. А чтобы сравнить модули смешанных чисел, нужно перевести их в неправильные дроби и сравнить, как обычные дроби.
На следующем рисунке показаны все этапы сравнения модулей смешанных чисел
Узнав какой модуль больше, а какой меньше, мы можем продолжить вычисление нашего примера:
Таким образом, значение выражения равно
Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть, как положительными, так и отрицательными.
Пример 14.
Найти значение выражения?3,2 + 4,3
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:
Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший, и перед полученным ответом поставить тот знак, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:
Модуль числа 4,3 больше, чем модуль числа?3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку в ответе должен стоять знак большего модуля, то есть модуля |+4,3|.
Таким образом, значение выражения?3,2 + (+4,3) равно 1,1
Пример 15.
Найти значение выражения 3,5 + (?8,3)
Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим тот знак, модуль которого больше
3,5 + (?8,3) = ?(|?8,3| ? |3,5|) = ?(8,3 ? 3,5) = ?(4,8) = ?4,8
Таким образом, значение выражения 3,5 + (?8,3) равно?4,8
Этот пример можно записать покороче:
Пример 16.
Найти значение выражения?7,2 + (?3,11)
Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:
7,2 + (?3,11) = ?7,20 + (?3,11) = ?(7,20 + 3,11) = ?(10,31) = ?10,31
Таким образом, значение выражения?7,2 + (?3,11) равно?10,31
Этот пример можно записать покороче:
Пример 17.
Найти значение выражения?0,48 + (?2,7)
Это сложение отрицательных рациональных чисел. Сложим их модули и перед полученным ответом поставим знак минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:
0,48 + (?2,7) = (?0,48) + (?2,70) = ?(0,48 + 2,70) = ?(3,18) = ?3,18
Пример 18.
Найти значение выражения?4,9 ? 5,9
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который дан в выражении, является знаком операции и не относится к десятичной дроби 5,9. У этой десятичной дроби свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:
Заменим вычитание сложением:
Получили сложение отрицательных рациональных чисел. Сложить их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:
(?4,9) + (?5,9) = ?(4,9 + 5,9) = ?(10,8) = ?10,8
Таким образом, значение выражения?4,9 ? 5,9 равно?10,8
= ?(4,9 + 5,9) = ?(10,8) = ?10,8
Пример 19.
Найти значение выражения 7 ? 9,3
Заключим в скобки каждое число вместе со своим знаками
Заменим вычитание сложением
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший и перед ответом поставим тот знак, модуль которого больше. Запись с модулями можно пропустить, чтобы не загромождать выражение:
(+7) + (?9,3) = ?(9,3 ? 7) = ?(2,3) = ?2,3
Таким образом, значение выражения 7 ? 9,3 равно?2,3
Подробное решение данного примера записывается следующим образом:
7 ? 9,3 = (+7) ? (+9,3) = (+7) + (?9,3) = ?(|?9,3| ? |+7|) =
Короткое решение будет выглядеть так:
Пример 20.
Найти значение выражения?0,25 ? (?1,2)
Заменим вычитание сложением:
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший и перед ответом поставим тот знак, модуль которого больше:
0,25 + (+1,2) = |+1,2| ? |?0,25| = 1,2 ? 0,25 = 0,95
Подробное решение данного примера записывается следующим образом:
0,25 ? (?1,2) = (?0,25) + (+1,2) = |+1,2| ? |?0,25| = 1,2 ? 0,25 = 0,95
Короткое решение будет выглядеть так:
Пример 21.
Найти значение выражения?3,5 + (4,1 ? 7,1)
В первую очередь выполним действия в скобках, затем сложим полученный ответ с числом?3,5. Запись с модулями пропустим, чтобы не загромождать выражения.
Первое действие:
4,1 ? 7,1 = (+4,1) ? (+7,1) = (+4,1) + (?7,1) = ?(7,1 ? 4,1) = ?(3,0) = ?3,0
Второе действие:
3,5 + (?3,0) = ?(3,5 + 3,0) = ?(6,5) = ?6,5
Ответ:
значение выражения?3,5 + (4,1 ? 7,1) равно?6,5.
3,5 + (4,1 ? 7,1) = ?3,5 + (?3,0) = ?6,5
Пример 22.
Найти значение выражения (3,5 ? 2,9) ? (3,7 ? 9,1)
Выполним действия в скобках, затем из числа которое получилось в результате выполнения первых скобок вычтем число, которое получилось в результате выполнения вторых скобок. Запись с модулями пропустим, чтобы не загромождать выражения.
Первое действие:
3,5 ? 2,9 = (+3,5) ? (+2,9) = (+3,5) + (?2,9) = 3,5 ? 2,9 = 0,6
Второе действие:
3,7 ? 9,1 = (+3,7) ? (+9,1) = (+3,7) + (?9,1) = ?(9,1 ? 3,7) = ?(5,4) = ?5,4
Третье действие
0,6 ? (?5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6
Ответ:
значение выражения (3,5 ? 2,9) ? (3,7 ? 9,1) равно 6.
Короткое решение данного примера можно записать следующим образом:
(3,5 ? 2,9) ? (3,7 ? 9,1) = 0,6 ? (?5,4) = 6,0 = 6
Пример 23.
Найти значение выражения?3,8 + 17,15 ? 6,2 ? 6,15
Заключим в скобки каждое рациональное число вместе со своими знаками
Заменим вычитание сложением там, где это можно
Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.
Не будем изобретать велосипед, а сложим все слагаемые слева направо в порядке их следования:
Первое действие:
(?3,8) + (+17,15) = 17,15 ? 3,80 = 13,35
Второе действие:
13,35 + (?6,2) = 13,35 ? ?6,20 = 7,15
Третье действие:
7,15 + (?6,15) = 7,15 ? 6,15 = 1,00 = 1
Ответ:
значение выражения?3,8 + 17,15 ? 6,2 ? 6,15 равно 1.
Короткое решение данного примера можно записать следующим образом:
3,8 + 17,15 ? 6,2 ? 6,15 = 13,35 + (?6,2) ? 6,15 = 7,15 ? 6,15 = 1,00 = 1
Короткие решения создают меньше проблем и путаниц, поэтому желательно привыкнуть к ним.
Пример 24.
Найти значение выражения
Переведём десятичную дробь?1,8 в смешанное число. Остальное перепишем, как есть. Если испытываете затруднения с переводом десятичной дроби в смешанное число, обязательно повторите урок десятичные дроби.
Пример 25.
Найти значение выражения
Заменим вычитание сложением. Попутно переведём десятичную дробь (?4,4) в неправильную дробь
В получившемся выражении нет отрицательных чисел. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вторым числом, и опустить скобки. Тогда получим простое выражение на сложение, которое решается легко
Пример 26.
Найти значение выражения
Переведём смешанное число в неправильную дробь, а десятичную дробь?0,85 в обыкновенную дробь. Получим следующее выражение:
Получили сложение отрицательных рациональных чисел. Сложим их модули и перед полученным ответом поставим знак минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:
Пример 27.
Найти значение выражения
Переведём обе дроби в неправильные дроби. Чтобы перевести десятичную дробь 2,05 в неправильную дробь, можно перевести ее сначала в смешанное число, а затем в неправильную дробь:
После перевода обеих дробей в неправильные дроби, получим следующее выражение:
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший и перед полученным ответом поставим тот знак, модуль которого больше:
Пример 28.
Найти значение выражения
Заменим вычитание сложением. Попутно переведём десятичную дробь в обыкновенную дробь
Пример 29.
Найти значение выражения
Переведём десятичные дроби?0,25 и?1,25 в обыкновенные дроби, остальное оставим как есть. Получим следующее выражение:
Можно сначала заменить вычитание сложением там, где это можно и сложить рациональные числа одно за другим. Есть и второй вариант: сначала сложить рациональные числа и , а затем из полученного числа вычесть рациональное число . Этим вариантом и воспользуемся.
Первое действие:
Второе действие:
Ответ:
значение выражения равно?2.
Пример 30.
Найти значение выражения
Переведём десятичные дроби в обыкновенные. Остальное оставим как есть
Получили сумму из нескольких слагаемых. Если сумма состоит из нескольких слагаемых, то выражение можно вычислять в любом порядке. Это следует из сочетательного закона сложения.
Поэтому мы можем организовать наиболее удобный для нас вариант. В первую очередь можно сложить первое и последнее слагаемое, а именно рациональные числа и . У этих чисел одинаковые знаменатели, а значит это освободит нас от необходимости приводить их к нему.
Первое действие:
Полученное число можно сложить со вторым слагаемым, а именно с рациональным числом . У рациональных чисел и одинаковые знаменатели в дробных частях, что опять же является преимуществом для нас
Второе действие:
Ну и сложим полученное число?7 с последним слагаемым, а именно с рациональным числом . Удобно то, что при вычислении данного выражения, семёрки исчезнут, то есть их сумма будет равна нулю, поскольку сумма противоположных чисел равна нулю
Третье действие:
Ответ:
значение выражения равно
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Сложение и вычитание целых чисел
В этом уроке мы изучим сложение и вычитание целых чисел, а также правила для их сложения и вычитания.
Напомним, что целые числа - это все положительные и отрицательные числа, а также число 0. Например, следующие числа являются целыми:
Положительные числа легко складываются и вычитаются, умножаются и делятся. К сожалению, этого нельзя сказать об отрицательных числах, которые смущают многих новичков своими минусами перед каждой цифрой. Как показывает практика, ошибки сделанные из-за отрицательных чисел, расстраивают обучающихся больше всего.
Примеры сложения и вычитания целых чисел
Первое чему следует научиться, это складывать и вычитать целые числа с помощью координатной прямой. Совсем необязательно рисовать координатную прямую. Достаточно воображать её в своих мыслях и видеть, где располагаются отрицательные числа, а где положительные.
Рассмотрим простейшее выражение: 1 + 3. Значение данного выражения равно 4:
Этот пример можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1, нужно сдвинуться вправо на три шага. В результате, мы окажемся в точке, где располагается число 4. На рисунке можно увидеть как это происходит:
Знак плюса в выражении 1 + 3 указывает нам, что мы должны двигаться вправо в сторону увеличения чисел.
Пример 2.
Найдём значение выражения 1 ? 3.
Значение данного выражения равно?2
Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число?2. На рисунке можно увидеть, как это происходит:
Знак минуса в выражении 1 ? 3 указывает нам, что мы должны двигаться влево в сторону уменьшения чисел.
Вообще, надо запомнить, что если осуществляется сложение, то нужно двигаться вправо в сторону увеличения. Если же осуществляется вычитание, то нужно двигаться влево в сторону уменьшения.
Пример 3.
Найти значение выражения?2 + 4
Значение данного выражения равно 2
Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается отрицательное число?2 нужно сдвинуться вправо на четыре шага. В результате мы окажемся в точке, где располагается положительное число 2.
Видно, что мы сдвинулись из точки где располагается отрицательное число?2 в правую сторону на четыре шага и оказались в точке, где располагается положительное число 2.
Знак плюса в выражении?2 + 4 указывает нам, что мы должны двигаться вправо в сторону увеличения чисел.
Пример 4.
Найти значение выражения?1 ? 3
Значение данного выражения равно?4
Этот пример опять же можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число?1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число?4
Видно, что мы сдвинулись из точки где располагается отрицательное число?1 в левую сторону на три шага и оказались в точке, где располагается отрицательное число?4.
Знак минуса в выражении?1 ? 3 указывает нам, что мы должны двигаться влево в сторону уменьшения чисел.
Пример 5.
Найти значение выражения?2 + 2
Значение данного выражения равно 0
Этот пример можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число?2 нужно сдвинуться вправо на два шага. В результате мы окажемся в точке, где располагается число 0
Видно, что мы сдвинулись из точки где располагается отрицательное число?2 в правую сторону на два шага и оказались в точке, где располагается число 0.
Знак плюса в выражении?2 + 2 указывает нам, что мы должны двигаться вправо в сторону увеличения чисел.
Правила сложения и вычитания целых чисел
Чтобы вычислить то или иное выражение, необязательно каждый раз воображать координатную прямую, и тем более рисовать её. Удобнее воспользоваться готовыми правилами.
Применяя правила, нужно обращать внимания на знак операции и знаки чисел, которые нужно сложить или вычесть. От этого будет зависеть какое правило применять.
Пример 1.
Найти значение выражения?2 + 5
Здесь к отрицательному числу прибавляется положительное число. Другими словами, осуществляется сложение чисел с разными знаками. ?2 это отрицательное число, а 5 - положительное. Для таких случаев предусмотрено следующее правило:
Итак, посмотрим какой модуль больше:
Модуль числа 5 больше, чем модуль числа?2. Правило требует из большего модуля вычесть меньший. Поэтому, мы должны из 5 вычесть 2, и перед полученным ответом поставить тот знак, модуль которого больше.
У числа 5 модуль больше, поэтому знак этого числа и будет в ответе. То есть, ответ будет положительным:
Обычно записывают покороче?2 + 5 = 3
Пример 2.
Найти значение выражения 3 + (?2)
Здесь как и в предыдущем примере, осуществляется сложение чисел с разными знаками. 3 - это положительное число, а?2 - отрицательное. Обратите внимание, что число?2 заключено в скобки, чтобы сделать выражение понятнее и красивее. Это выражение намного проще для восприятия, чем выражение 3+?2.
Итак, применим правило сложения чисел с разными знаками. Как и в прошлом примере, из большего модуля вычитаем меньший модуль и перед ответом ставим тот знак, модуль которого больше:
3 + (?2) = |3| ? |?2| = 3 ? 2 = 1
Модуль числа 3 больше, чем модуль числа?2, поэтому мы из 3 вычли 2, и перед полученным ответом поставили тот знак модуль, которого больше. У числа 3 модуль больше, поэтому знак этого числа и поставлен в ответе. То есть, ответ положительный.
Обычно записывают покороче 3 + (?2) = 1
Пример 3.
Найти значение выражения 3 ? 7
В этом выражении из меньшего числа вычитается большее. Для такого случая предусмотрено следующее правило:
Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить минус.
В этом выражении есть небольшая загвоздка. Вспомним, что знак равенства (=) ставится между величинами и выражениями тогда, когда они равны между собой.
Значение выражения 3 ? 7 как мы узнали равно?4. Это означает, что любые преобразования которые мы будем совершать в данном выражении, должны быть равны?4
Но мы видим, что на втором этапе располагается выражение 7 ? 3, которое не равно?4.
Чтобы исправить эту ситуацию, выражение 7 ? 3 нужно взять в скобки и перед этой скобкой поставить минус:
3 ? 7 = ? (7 ? 3) = ? (4) = ?4
В этом случае равенство будет соблюдаться на каждом этапе:
После того как выражение вычислено, скобки можно убрать, что мы и сделали.
Поэтому, чтобы быть более точным, решение должно выглядеть так:
3 ? 7 = ? (7 ? 3) = ? (4) = ? 4
Данное правило можно записать с помощью переменных. Выглядеть оно будет следующим образом:
a ? b = ? (b ? a)
Большое количество скобок и знаков операций могут усложнять решение, казалось бы совсем простой задачи, поэтому целесообразнее научиться записывать такие примеры коротко, например 3 ? 7 = ? 4.
На самом деле сложение и вычитание целых чисел сводится только к сложению. Что это означает? Это означает, что если требуется осуществить вычитание чисел, эту операцию можно заменить сложением.
Итак знакомимся с новым правилом:
Вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.
Например, рассмотрим простейшее выражение 5 ? 3. На начальных этапах изучения математики мы просто ставили знак равенства и записывали ответ:
Но сейчас мы прогрессируем в изучении, поэтому надо приспосабливаться к новым правилам. Новое правило говорит, что вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.
На примере выражения 5?3 попробуем понять это правило. Уменьшаемое в данном выражении это 5, а вычитаемое это 3. Правило говорит, что для того чтобы из 5 вычесть 3 , нужно к 5 прибавить такое число, которое будет противоположно 3. Противоположное для числа 3 это число?3. Записываем новое выражение:
А как находить значения для таких выражений мы уже знаем. Это сложение чисел с разными знаками, которое мы рассмотрели выше. Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший, и перед полученным ответом поставить тот знак, модуль которого больше:
5 + (?3) = |5| ? |?3| = 5 ? 3 = 2
Модуль числа 5 больше, чем модуль числа?3. Поэтому мы из 5 вычли 3 и получили 2. У числа 5 модуль больше, поэтому знак этого числа и поставили в ответе. То есть ответ положителен.
Поначалу быстро заменять вычитание сложением удаётся не всем. Это связано с тем, что положительные числа записываются без своего знака плюс.
Например, в выражении 3 ? 1 знак минуса, указывающий на вычитание, является знаком операции и не относится к единице. Единица в данном случае является положительным числом и у неё есть свой знак плюса, но мы его не видим, поскольку плюс перед положительными числами по традиции не записывают.
А стало быть для наглядности данное выражение можно записать следующим образом:
Для удобства числа со своим знаками заключают в скобки. В таком случае заменить вычитание сложением намного проще. Вычитаемое в данном случае это число (+1), а противоположное ему число (?1). Заменим операцию вычитания сложением и вместо вычитаемого (+1) записываем противоположное ему число (?1)
(+3) ? (+1) = (+3) + (?1) = |+3| ? |?1| = 3 ? 1 = 2
На первый взгляд покажется, какой смысл в этих лишних телодвижениях, если можно старым добрым методом поставить знак равенства и сразу записать ответ 2. На самом деле это правило ещё не раз нас выручит.
Решим предыдущий пример 3 ? 7, используя правило вычитания. Сначала приведём выражение к нормальному виду, расставив каждому числу свои знаки. У тройки знак плюса, поскольку она является положительным числом. Минус, указывающий на вычитание не относится к семёрке. У семёрки знак плюса, поскольку она также является положительным числом:
Заменим вычитание сложением:
Дальнейшее вычисление не составляет труда:
Пример 7.
Найти значение выражения?4 ? 5
Перед нами снова операция вычитания. Эту операцию нужно заменить сложением. К уменьшаемому (?4) прибавим число, противоположное вычитаемому (+5). Противоположное число для вычитаемого (+5) это число (?5).
Мы пришли к ситуации, где нужно сложить отрицательные числа. Для таких случаев предусмотрено следующее правило:
Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.
Итак, сложим модули чисел, как от нас требует правило и поставим перед полученным ответом минус:
(?4) ? (+5) = (?4) + (?5) = |?4| + |?5| = 4 + 5 = ?9
Запись с модулями необходимо заключить в скобки и перед этими скобками поставить минус. Так мы обеспечим минус, который должен стоять перед ответом:
(?4) ? (+5) = (?4) + (?5) = ?(|?4| + |?5|) = ?(4 + 5) = ?(9) = ?9
Решение для данного примера можно записать покороче:
Пример 8.
Найти значение выражения?3 ? 5 ? 7 ? 9
Приведём выражение к понятному виду. Здесь все числа, кроме числа?3 являются положительными, поэтому у них будут знаки плюса:
Заменим операции вычитания операциями сложения. Все минусы (кроме минуса, который перед тройкой) поменяются на плюсы и все положительные числа поменяются на противоположные:
Теперь применим правило сложения отрицательных чисел. Чтобы сложить отрицательные числа, нужно сложить их модули и перед полученным ответом поставить минус:
= ?(|?3| + |?5| + |?7| + |?9|) = ?(3 + 5 + 7 + 9) = ?(24) = ?24
Решение для данного примера можно записать покороче:
3 ? 5 ? 7 ? 9 = ?(3 + 5 + 7 + 9) = ?24
Пример 9.
Найти значение выражения?10 + 6 ? 15 + 11 ? 7
Приведём выражение к понятному виду:
Здесь сразу две операции: сложение и вычитание. Сложение оставляем как есть, а вычитание заменяем сложением:
(?10) + (+6) ? (+15) + (+11) ? (+7) = (?10) + (+6) + (?15) + (+11) + (?7)
Соблюдая порядок действий, выполним поочерёдно каждое действие, опираясь на ранее изученные правила. Записи с модулями можно пропустить:
Первое действие:
(?10) + (+6) = ? (10 ? 6) = ? (4) = ? 4
Второе действие:
(?4) + (?15) = ? (4 + 15) = ? (19) = ? 19
Третье действие:
(?19) + (+11) = ? (19 ? 11) = ? (8) = ?8
Четвёртое действие:
(?8) + (?7) = ? (8 + 7) = ? (15) = ? 15
Таким образом, значение выражения?10 + 6 ? 15 + 11 ? 7 равно?15
Примечание
. Приводить выражение к понятному виду, заключая числа в скобки, вовсе необязательно. Когда происходит привыкание к отрицательным числам, это действие можно пропустить, поскольку оно отнимает время и может запутать.
Итак, для сложения и вычитания целых чисел необходимо запомнить следующие правила:
Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить тот знак, модуль которого больше.
Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить знак минуса.
Вычесть одно число из другого означает, прибавить к уменьшаемому число противоположное вычитаемому.
Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить знак минус.
- Хоккей без правил В Контакте Игра была выпущена в сентябре 2012 года, и набрала уже почти 700 000 пользователей. Предусмотрено два режима игры и множество возможностей для комплектования команды. Течение матча в Хоккее без правил В Контакте напоминает ранние игры серии NHL от Electronic Arts. 3 игрока на […]
- Правила покера Омаха Холдем Омаха Хай-Лоу и пятикарточная Омаха Омаха Холдем (Omaha Hold"Em) является небольшим видоизменением Техасского Холдема. Если вы плохо знакомы с этой самой популярной разновидностью покера, изучайте правила Техасского Холдема по ссылке; их знание необходимо для понимания правил Омахи. Все […]
- Решение задач по генетике с использованием 1 и 2 законов Менделя Лекция 8 Julia Kjahrenova 1. - презентация Презентация была опубликована 3 года назад пользователемАлина Артемьева Похожие презентации Презентация на тему: " Решение задач по генетике с использованием 1 и 2 законов Менделя Лекция 8 Julia Kjahrenova 1." […]
- 5-7 алгебра правила Числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же для данной последовательности числом d, называют арифметической прогрессией. Число d называют разностью арифметической прогрессии. В арифметической прогрессии, т. е. в […]
- Определяем ставку транспортного налога для фургонов и других нетипичных автомобилей с категорией "B" Вылавливаем нужную информацию из ПТС Сразу скажем, что данные, указанные в строке 4 "Категория ТС (A, B, C, D, прицеп)" паспорта транспортного средства (ПТС), учитывать не нужно. Ведь категория "B" вовсе не означает, […]
- Рейтинг страховых компаний ОСАГО ОСАГО относится к обязательному страхованию, оно действует не только на территории России, но и в других странах ближнего зарубежья. Оформлением данных полисов занимаются многие страховые компании, которые получили соответствующую лицензию на ведение подобной деятельности. Однако, […]
- Проживание гостиница уфа Мини-отель в Уфе 5 Five Rooms Приглашаем гостей столицы в уютный комфортабельный отель, расположенный в центре города Уфа по улице Комсомольская 159/1. В непосредственной близости от отеля расположены кинокомплекс «Искра IMAX», цирк, ресторан-клуб А кафе, ресторан Beer Berry, ТРЦ […]
- Правила использования Present Simple Tense в английском языке Present Simple Tense – это грамматическое время, которое считается одним из самых простых в понимании, поскольку, настоящее простое время существует во всех языках. В славянских языках так точно. Если вы читаете эту статью, это значит, что вы только […]
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.
Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 - b n и h 5 -d 4 есть a 3 - b n + h 5 - d 4 .
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a 2 и 3a 2 равна 5a 2 .
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.
Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Или:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.
Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат - это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .
Здесь 5 - это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.
Так, a n .a m = a m+n .
Для a n , a берётся как множитель столько раз, сколько равна степень n;
И a m , берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.
Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .
Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1
Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Ответ: x 4 - y 4 .
Умножьте (x 3 + x - 5) ⋅ (2x 3 + x + 1).
Это правило справедливо и для чисел, показатели степени которых - отрицательные.
1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.
2. y -n .y -m = y -n-m .
3. a -n .a m = a m-n .
Если a + b умножаются на a - b, результат будет равен a 2 - b 2: то есть
Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.
Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.
Так, (a - y).(a + y) = a 2 - y 2 .
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .
Деление степеней
Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.
Таким образом a 3 b 2 делённое на b 2 , равно a 3 .
Или:
$\frac{9a^3y^4}{-3a^3} = -3y^4$
$\frac{a^2b + 3a^2}{a^2} = \frac{a^2(b+3)}{a^2} = b + 3$
$\frac{d\cdot (a - h + y)^3}{(a - h + y)^3} = d$
Запись a 5 , делённого на a 3 , выглядит как $\frac{a^5}{a^3}$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.
При делении степеней с одинаковым основанием их показатели вычитаются..
Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac{yyy}{yy} = y$.
И a n+1:a = a n+1-1 = a n . То есть $\frac{aa^n}{a} = a^n$.
Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3
Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.
h 2:h -1 = h 2+1 = h 3 или $h^2:\frac{1}{h} = h^2.\frac{h}{1} = h^3$
Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.
Примеры решения примеров с дробями, содержащими числа со степенями
1. Уменьшите показатели степеней в $\frac{5a^4}{3a^2}$ Ответ: $\frac{5a^2}{3}$.
2. Уменьшите показатели степеней в $\frac{6x^6}{3x^5}$. Ответ: $\frac{2x}{1}$ или 2x.
3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .
4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .
5. Умножьте (a 3 + b)/b 4 на (a - b)/3.
6. Умножьте (a 5 + 1)/x 2 на (b 2 - 1)/(x + a).
7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .
8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.
9. Разделите (h 3 - 1)/d 4 на (d n + 1)/h.
Урок на тему: "Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры"
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Пособие к учебнику Ю.Н. Макарычева
Пособие к учебнику А.Г. Мордковича
Цель урока: научится производить действия со степенями числа.
Для начала вспомним понятие "степень числа". Выражение вида $\underbrace{ a * a * \ldots * a }_{n}$ можно представить, как $a^n$.
Справедливо также обратное: $a^n= \underbrace{ a * a * \ldots * a }_{n}$.
Это равенство называется "запись степени в виде произведения". Оно поможет нам определить, каким образом умножать и делить степени.
Запомните:
a – основание степени.
n – показатель степени.
Если n = 1, значит, число а взяли один раз и соответственно: $a^n= a$.
Если n= 0, то $a^0= 1$.
Почему так происходит, мы сможем выяснить, когда познакомимся с правилами умножения и деления степеней.
Правила умножения
a) Если умножаются степени с одинаковым основанием.Чтобы $a^n * a^m$, запишем степени в виде произведения: $\underbrace{ a * a * \ldots * a }_{n} * \underbrace{ a * a * \ldots * a }_{m}$.
На рисунке видно, что число а взяли n+m раз, тогда $a^n * a^m = a^{n + m}$.
Пример.
$2^3 * 2^2 = 2^5 = 32$.
Это свойство удобно использовать, что бы упростить работу при возведении числа в большую степень.
Пример.
$2^7= 2^3 * 2^4 = 8 * 16 = 128$.
б) Если умножаются степени с разным основанием, но одинаковым показателем.
Чтобы $a^n * b^n$, запишем степени в виде произведения: $\underbrace{ a * a * \ldots * a }_{n} * \underbrace{ b * b * \ldots * b }_{m}$.
Если поменять местами множители и посчитать получившиеся пары, получим: $\underbrace{ (a * b) * (a * b) * \ldots * (a * b) }_{n}$.
Значит, $a^n * b^n= (a * b)^n$.
Пример.
$3^2 * 2^2 = (3 * 2)^2 = 6^2= 36$.
Правила деления
a) Основание степени одинаковое, показатели разные.Рассмотрим деление степени с большим показателем на деление степени с меньшим показателем.
Итак, надо $\frac{a^n}{a^m}$, где n > m.
Запишем степени в виде дроби:
$\frac{\underbrace{ a * a * \ldots * a }_{n}}{\underbrace{ a * a * \ldots * a }_{m}}$.
Для удобства деление запишем в виде простой дроби.Теперь сократим дробь.
Получается: $\underbrace{ a * a * \ldots * a }_{n-m}= a^{n-m}$.
Значит, $\frac{a^n}{a^m}=a^{n-m}$.
Это свойство поможет объяснить ситуацию с возведением числа в нулевую степень. Допустим, что n=m, тогда $a^0= a^{n-n}=\frac{a^n}{a^n} =1$.
Примеры.
$\frac{3^3}{3^2}=3^{3-2}=3^1=3$.
$\frac{2^2}{2^2}=2^{2-2}=2^0=1$.
б) Основания степени разные, показатели одинаковые.
Допустим, необходимо $\frac{a^n}{ b^n}$. Запишем степени чисел в виде дроби:
$\frac{\underbrace{ a * a * \ldots * a }_{n}}{\underbrace{ b * b * \ldots * b }_{n}}$.
Для удобства представим.Используя свойство дробей, разобьем большую дробь на произведение маленьких, получим.
$\underbrace{ \frac{a}{b} * \frac{a}{b} * \ldots * \frac{a}{b} }_{n}$.
Соответственно: $\frac{a^n}{ b^n}=(\frac{a}{b})^n$.
Пример.
$\frac{4^3}{ 2^3}= (\frac{4}{2})^3=2^3=8$.
В предыдущей статье мы рассказали, что из себя представляют одночлены. В этом материале разберем, как решать примеры и задачи, в которых они применяются. Здесь будут рассмотрены такие действия, как вычитание, сложение, умножение, деление одночленов и возведение их в степень с натуральным показателем. Мы покажем, как определяются такие операции, обозначим основные правила их выполнения и то, что должно получится в результате. Все теоретические положения, как обычно, будут проиллюстрированы примерами задач с описаниями решений.
Удобнее всего работать со стандартной записью одночленов, поэтому все выражения, которые будут использованы в статье, мы приводим в стандартном виде. Если изначально они заданы иначе, рекомендуется сначала привести их к общепринятой форме.
Правила сложения и вычитания одночленов
Наиболее простые действия, которые можно проводить с одночленами – это вычитание и сложение. В общем случае результатом этих действий будет являться многочлен (одночлен возможен в некоторых частных случаях).
Когда мы складываем или вычитаем одночлены, сначала записываем в общепринятой форме соответствующую сумму и разность, после чего упрощаем получившееся выражение. Если есть подобные слагаемые, их нужно привести, скобки – раскрыть. Поясним на примере.
Пример 1
Условие:
выполните сложение одночленов − 3 · x и 2 , 72 · x 3 · y 5 · z .
Решение
Запишем сумму исходных выражений. Добавим скобки и поставим между ними плюс. У нас получится следующее:
(− 3 · x) + (2 , 72 · x 3 · y 5 · z)
Когда мы выполним раскрытие скобок, получится - 3 · x + 2 , 72 · x 3 · y 5 · z . Это многочлен, записанный в стандартной форме, который и будет результатом сложения данных одночленов.
Ответ:
(− 3 · x) + (2 , 72 · x 3 · y 5 · z) = − 3 · x + 2 , 72 · x 3 · y 5 · z .
Если у нас задано три, четыре и больше слагаемых, мы осуществляем это действие точно так же.
Пример 2
Условие:
проведите в правильном порядке указанные действия с многочленами
3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c
Решение
Начнем с раскрытия скобок.
3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c
Мы видим, что полученное выражение можно упростить путем приведения подобных слагаемых:
3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = = (3 · a 2 + a 2 - 7 · a 2) + 4 · a · c - 2 2 3 · a · c + 4 9 = = - 3 · a 2 + 1 1 3 · a · c + 4 9
У нас получился многочлен, который и будет результатом данного действия.
Ответ:
3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = - 3 · a 2 + 1 1 3 · a · c + 4 9
В принципе, мы можем выполнить сложение и вычитание двух одночленов с некоторыми ограничениями так, чтобы получить в итоге одночлен. Для этого нужно соблюсти некоторые условия, касающиеся слагаемых и вычитаемых одночленов. О том, как это делается, мы расскажем в отдельной статье.
Правила умножения одночленов
Действие умножения не налагает никаких ограничений на множители. Умножаемые одночлены не должны соответствовать никаким дополнительным условиям, чтобы в результате получится одночлен.
Чтобы выполнить умножение одночленов, нужно выполнить следующие шаги:
- Правильно записать произведение.
- Раскрыть скобки в полученном выражении.
- Сгруппировать по возможности множители с одинаковыми переменными и числовые множители отдельно.
- Выполнить необходимые действия с числами и применить к оставшимся множителям свойство умножения степеней с одинаковыми основаниями.
Посмотрим, как это делается на практике.
Пример 3
Условие:
выполните умножение одночленов 2 · x 4 · y · z и - 7 16 · t 2 · x 2 · z 11 .
Решение
Начнем с составления произведения.
Раскрываем в нем скобки и получаем следующее:
2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11
2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11
Все, что нам осталось сделать – это умножить числа в первых скобках и применить свойство степеней для вторых. В итоге получим следующее:
2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11 = - 7 8 · t 2 · x 4 + 2 · y · z 3 + 11 = = - 7 8 · t 2 · x 6 · y · z 14
Ответ:
2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11 = - 7 8 · t 2 · x 6 · y · z 14 .
Если у нас в условии стоят три многочлена и больше, мы умножаем их по точно такому же алгоритму. Более подробно вопрос умножения одночленов мы рассмотрим в рамках отдельного материала.
Правила возведения одночлена в степень
Мы знаем, что степенью с натуральным показателем называют произведение некоторого числа одинаковых множителей. На их количество указывает число в показателе. Согласно этому определению, возведение одночлена в степень равнозначно умножению указанного числа одинаковых одночленов. Посмотрим, как это делается.
Пример 4
Условие:
выполните возведение одночлена − 2 · a · b 4 в степень 3 .
Решение
Мы можем заменить возведение в степень на умножение 3 -х одночленов − 2 · a · b 4 . Запишем и получим нужный ответ:
(− 2 · a · b 4) 3 = (− 2 · a · b 4) · (− 2 · a · b 4) · (− 2 · a · b 4) = = ((− 2) · (− 2) · (− 2)) · (a · a · a) · (b 4 · b 4 · b 4) = − 8 · a 3 · b 12
Ответ:
(− 2 · a · b 4) 3 = − 8 · a 3 · b 12 .
А как быть в том случае, когда степень имеет большой показатель? Записывать большое количество множителей неудобно. Тогда для решения такой задачи нам надо применить свойства степени, а именно свойство степени произведения и свойство степени в степени.
Решим задачу, которую мы привели выше, указанным способом.
Пример 5
Условие:
выполните возведение − 2 · a · b 4 в третью степень.
Решение
Зная свойство степени в степени, мы можем перейти к выражению следующего вида:
(− 2 · a · b 4) 3 = (− 2) 3 · a 3 · (b 4) 3 .
После этого мы возводим в степень - 2 и применяем свойство степени в степени:
(− 2) 3 · (a) 3 · (b 4) 3 = − 8 · a 3 · b 4 · 3 = − 8 · a 3 · b 12 .
Ответ:
− 2 · a · b 4 = − 8 · a 3 · b 12 .
Возведению одночлена в степень мы также посвятили отдельную статью.
Правила деления одночленов
Последнее действие с одночленами, которое мы разберем в данном материале, – деление одночлена на одночлен. В результате мы должны получить рациональную (алгебраическую) дробь (в некоторых случаях возможно получение одночлена). Сразу уточним, что деление на нулевой одночлен не определяется, поскольку не определяется деление на 0.
Для выполнения деления нам нужно записать указанные одночлены в форме дроби и сократить ее, если есть такая возможность.
Пример 6
Условие:
выполните деление одночлена − 9 · x 4 · y 3 · z 7 на − 6 · p 3 · t 5 · x 2 · y 2 .
Решение
Начнем с записи одночленов в форме дроби.
9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2
Эту дробь можно сократить. После выполнения этого действия получим:
3 · x 2 · y · z 7 2 · p 3 · t 5
Ответ:
- 9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2 = 3 · x 2 · y · z 7 2 · p 3 · t 5 .
Условия, при которых в результате деления одночленов мы получим одночлен, приводятся в отдельной статье.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться . А сейчас мы более подробно остановимся на свойствах степеней.
Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.
Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.
Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.
А теперь используем правило . 16=4 2 , или 2 4 , 64=4 3 , или 2 6 , в то же время 1024=6 4 =4 5 , или 2 10 .
Следовательно, нашу задачу можно записать по-другому: 4 2 х4 3 =4 5 или 2 4 х2 6 =2 10 , и каждый раз мы получаем 1024.
Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени, или экспонент, разумеется, при том условии, что основания сомножителей равны.
Таким образом, мы можем, не производя умножения, сразу сказать, что 2 4 х2 2 х2 14 =2 20 .
Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого. Таким образом, 2 5:2 3 =2 2 , что в обычных числах равно 32:8=4, то есть 2 2 . Подведем итоги:
a m х a n =a m+n , a m: a n =a m-n , где m и n — целые числа.
С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 2 3 и 2 4 , но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 2 3 х3 2 , и в этом случае мы не можем суммировать экспоненты. Ни 2 5 и ни 3 5 не являются ответом, ответ также не лежит в интервале между этими двумя числами.
Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огромные преимущества, особенно при сложных и трудоемких вычислениях.