Стороны прямоугольника попарно. Прямоугольник
Копилка полезных уроков

Стороны прямоугольника попарно. Прямоугольник

4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата :

5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной):

6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:

7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла:

8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:

Угол между стороной и диагональю прямоугольника.

Формулы для определения угла между стороной и диагональю прямоугольника:

1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:

2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:

Угол между диагоналями прямоугольника.

Формулы для определения угла меж диагоналей прямоугольника:

1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:

β = 2α

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ.

В школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.

Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.

Вконтакте

Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака, по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:

  • фигура является четырёхугольником, три угла которого равны 90°;
  • представленный четырёхугольник - это параллелограмм с равными диагоналями;
  • параллелограмм, который имеет по крайней мере один прямой угол.

Интересно знать: что такое выпуклый , его особенности и признаки.

Поскольку прямоугольник - это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.

Формулы для вычисления длины сторон

В прямоугольнике

противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую - шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной - AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).

Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a - длина прямоугольника, b - его ширина, d - диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S - площадь фигуры, P - периметр, α — угол между диагональю и длиной, β — острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:

  • С использованием диагонали и известной стороны: a = √(d ² — b ²), b = √(d ² — a ²).
  • По площади фигуры и одной из её сторон: a = S / b, b = S / a.
  • При помощи периметра и известной стороны: a = (P - 2 b) / 2, b = (P - 2 a) / 2.
  • Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
  • Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.

Периметр и площадь

Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:

  • Через обе стороны: P = 2 (a + b).
  • Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.

Площадь - это пространство, ограниченное периметром. Три основных способа для расчёта площади:

  • Через длины обеих сторон: S = a*b.
  • При помощи периметра и какой-либо одной известной стороны: S = (Pa - 2 a ²) / 2; S = (Pb - 2 b ²) / 2.
  • По диагонали и углу β: S = 0,5 d ² sinβ.

В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника. Перечислим основные из них:

  1. Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
  2. Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
  3. Диагональ разделяет прямоугольник на два треугольника с прямым углом.
  4. Точка пересечения совпадает с центром описанной окружности, а сами диагонали - с её диаметром.

Применяются следующие формулы для расчёта длины диагонали:

  • С использованием длины и ширины фигуры: d = √(a ² + b ²).
  • С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.

Определение и свойства квадрата

Квадрат - это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат - это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1. Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон - S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами - это квадрат?

Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2. Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника - 8. Рассчитать, чему равна диагональ.

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие - это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3. Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Решение: По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17; d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.

Прямоугольник образуется замкнутой ломаной линией , состоящей из четырёх звеньев, и той частью плоскости, которая находится внутри ломаной.

В тексте прямоугольники обозначаются четырьмя прописными латинскими буквами, стоящими при вершинах - ABCD.

У прямоугольников противоположные стороны параллельны и равны:

ABCD точки A, B, C и D - это вершины прямоугольника, отрезки AB, BC, CD и DA - стороны. Углы, образованные сторонами, называются внутренними углами или просто углами прямоугольника.

Главное отличие прямоугольников от остальных четырёхугольников - четыре прямых внутренних угла:

Свойства диагоналей

Отрезки , соединяющие противолежащие вершины прямоугольника, называются диагоналями.

Отрезки AC и BD - диагонали, O - точка пересечения диагоналей.

В любом прямоугольнике можно провести всего две диагонали. Они обладают следующими свойствами:

  • диагонали прямоугольника равны

    AC = BD

  • точка пересечения делит каждую диагональ на два равных отрезка

    AO = OC и BO = OD

  • так как диагонали равны, то и отрезки, на которые они разделяются в точке пересечения, тоже равны между собой:

    AO = OC = BO = OD

  • каждая диагональ делит прямоугольник на два равных треугольника:

    ΔABC = ΔCDA и ΔDAB = ΔBCD

Квадрат

- прямоугольник, у которого все стороны равны. Диагонали квадрата обладают всеми свойствами диагоналей прямоугольника. Также диагонали квадрата имееют и дополнительных свойства:

  • диагонали квадрата пересекаются под прямым углом, то есть они взаимно перпендикулярны:

    ACBD

  • диагонали квадрата делят его на четыре равных треугольника:

    ΔABO = ΔBCO = ΔCDO = ΔDAO

  • диагонали квадрата делят внутренние углы на две равные части, то есть они являются биссектрисами

Определение.

Прямоугольник - это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника, а короткую - шириной прямоугольника.

Стороны прямоугольника одновременно является его высотами.


Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

AO = BO = CO = DO = d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника - квадрат).


Стороны прямоугольника

Определение.

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

a = √d 2 - b 2

b = √d 2 - a 2

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

b = d cosβ
2

Диагональ прямоугольника

Определение.

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

d = √a 2 + b 2

2. Формула диагонали прямоугольника через площадь и любую сторону:

4. Формула диагонали прямоугольника через радиус описанной окружности:

d = 2R

5. Формула диагонали прямоугольника через диаметр описанной окружности:

d = D о

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

d = √2S: sin β


Периметр прямоугольника

Определение.

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

P = 2a + 2b

P = 2(a + b )

2. Формула периметру прямоугольника через площадь и любую сторону:

P =2S + 2a 2=2S + 2b 2
ab

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √d 2 - a 2) = 2(b + √d 2 - b 2)

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R 2 - a 2) = 2(b + √4R 2 - b 2)

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √D o 2 - a 2) = 2(b + √D o 2 - b 2)


Площадь прямоугольника

Определение.

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

S = a · b

2. Формула площади прямоугольника через периметр и любую сторону:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a √4R 2 - a 2 = b √4R 2 - b 2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a √D o 2 - a 2 = b √D o 2 - b 2


Окружность описанная вокруг прямоугольника

Определение.

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

Прямоугольник - параллелограмм, у которого все углы прямые (равны 90 градусам). Площадь прямоугольника равна произведению его смежных сторон. Диагонали прямоугольника равны. Вторая формула нахождения площади прямоугольника исходит из формулы площади четырехугольника через диагонали.

Прямоугольник

- это четырехугольник, у которого каждый угол является прямым.

Квадрат - это частный случай прямоугольника.

Прямоугольник имеет две пары равных сторон. Длина наиболее длинных пар сторон называется длиной прямоугольника, а длина наиболее коротких - шириной прямоугольника.

Свойства прямоугольника

1. Прямоугольник - это параллелограмм

Свойство объясняется действием признака 3 параллелограмма (то есть \(\angle A = \angle C \) , \(\angle B = \angle D \) )

2. Противоположные стороны равны

\(AB = CD,\enspace BC = AD \)

3. Противоположные стороны параллельны

\(AB \parallel CD,\enspace BC \parallel AD \)

4. Прилегающие стороны перпендикулярны друг другу

\(AB \perp BC,\enspace BC \perp CD,\enspace CD \perp AD,\enspace AD \perp AB \)

5. Диагонали прямоугольника равны

\(AC = BD \)

Согласно свойству 1 прямоугольник является параллелограммом, а значит \(AB = CD \) .

Следовательно, \(\triangle ABD = \triangle DCA \) по двум катетам (\(AB = CD \) и \(AD \) - совместный).

Если обе фигуры - \(ABC \) и \(DCA \) тождественны, то и их гипотенузы \(BD \) и \(AC \) тоже тождественны.

Значит, \(AC = BD \) .

Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.

Докажем и это.

\(\Rightarrow AB = CD \) , \(AC = BD \) по условию. \(\Rightarrow \triangle ABD = \triangle DCA \) уже по трем сторонам.

Получается, что \(\angle A = \angle D \) (как углы параллелограмма). И \(\angle A = \angle C \) , \(\angle B = \angle D \) .

Выводим, что \(\angle A = \angle B = \angle C = \angle D \). Все они по \(90^{\circ} \) . В сумме - \(360^{\circ} \) .

7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника

\(\triangle ABC = \triangle ACD, \enspace \triangle ABD = \triangle BCD \)

8. Точка пересечения диагоналей делит их пополам

\(AO = BO = CO = DO \)

9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности

Похожие публикации

ДАЛЬШЕ