Угловое ускорение при движении по окружности. Движение материальной точки по окружности
4.1. Движение по окружности с постоянной скоростью.
Движение по окружности - простейший вид криволинейного движения.
4.1.1. Криволинейное движение - движение, траекторий которого является кривая линия.
Для движения по окружности с постоянной скоростью:
1) траектория движения - окружность;
2) вектор скорости направлен по касательной к окружности;
3) вектор скорости постоянно меняет свое направление;
4) за изменение направления скорости отвечает ускорение, называемое центростремительным (или нормальным) ускорением;
5) центростремительное ускорение меняет только направление вектора скорости, при этом модуль скорости остается неизменным;
6) центростремительное ускорение направлено к центру окружности, по которой происходит движение (центростремительное ускорение всегда перпендикулярно вектору скорости).
4.1.2. Период (T ) - время одного полного оборота по окружности.
Это величина постоянная, так как длина окружности постоянная и скорость движения постоянна
4.1.3 Частота - число полных оборотов за 1 с.
По сути, частота отвечает на вопрос: как быстро вращается тело?
4.1.4. Линейная скорость - показывает, какой путь проходит тело за 1 с (это та же самая скорость, о которой говорилось в предыдущих темах)
где R - радиус окружности.
4.1.5. Угловая скорость показывает, на какой угол поворачивается тело за 1 с.
где - угол, на который повернулось тело за время
4.1.6. Центростремительное ускорение
Напомним, что центростремительное ускорение отвечает только за поворот вектора скорости. При этом, так как скорость постоянная величина, то значение ускорения тоже постоянно.
4.1.7. Закон изменения угла поворота
Это полный аналог закона движения при постоянной скорости:
Роль координаты x играет угол роль начальной координаты играет скорость - угловая скорость И с формулой следует работать так же, как ранее работали с формулой закона равномерного движения.
4.2. Движение по окружности с постоянным ускорением.
4.2.1. Тангенциальное ускорение
Центростремительное ускорение отвечает за изменение направления вектора скорости, но если еще меняется и модуль скорости, то необходимо ввести величину отвечающую за это - тангенциальное ускорение
Из вида формулы ясно, что - это обычное ускорение, о котором говорилось раньше. Если то справедливы формулы равноускоренного движения:
где S - путь, который проходит тело по окружности.
Итак, еще раз подчеркнем, отвечает за изменение модуля скорости.
4.2.2. Угловое ускорение
Мы ввели аналог скорости для движения по окружности - угловая скорость. Естественно будет ввести и аналог ускорения - угловое ускорение
Угловое ускорение связано с тангенциальным ускорением:
Из формулы видно, что если тангенциальное ускорение постоянно, то и угловое ускорение будет постоянно. Тогда можем записать:
Формула является полным аналогом закона равнопеременного движения, поэтому работать с этой формулой мы уже умеем.
4.2.3. Полное ускорение
Центростремительное (или нормальное) и тангенциальное ускорения не являются самостоятельными. На самом деле, это проекции полного ускорения на нормальную (направлена по радиусу окружности, то есть перпендикулярно скорости) и тангенциальную (направлена по касательной к окружности в сторону, куда направлен вектор скорости) оси. Поэтому
Нормальная и тангенциальные оси всегда перпендикулярны, следовательно, абсолютно всегда модуль полного ускорения можно найти по формуле:
4.4. Движение по криволинейной траектории.
Движение по окружности является частным видом криволинейного движения. В общем случае, когда траектория представляет собой произвольную кривую (см. рис.), всю траекторию можно разбить на участки: AB и DE - прямолинейные участки, для которых справедливы все формулы движения по прямой; а для каждой участка, который нельзя рассмотреть как прямую, строим касательную окружность (окружность, которая касается траектории только в этой точке) - в точках C и D . Радиус касательной окружности называется радиусом кривизны. В каждой точке траектории радиус кривизны имеет свое значение.
Формула для нахождения радиуса кривизны :
где - нормальное ускорение в данной точке (проекция полного ускорения на ось, перпендикулярную вектору скорости).
Движение по окружности – частный случай криволинейного движения. Скорость тела в любой точке криволинейной траектории направлена по касательной к ней (рис.2.1). Скорость как вектор при этом может изменяться и по модулю (величине) и по направлению. Если модуль скоростиостается неизменным, то говорят оравномерном криволинейном движении.
Пусть тело движется по окружности с постоянной по величине скоростью из точки 1 в точку 2.
При этом тело пройдет путь, равный длине дуги ℓ 12 между точками 1 и 2 за времяt. За это же времяtрадиус- векторR, проведенный из центра окружности 0 к точке, повернется на угол Δφ.
Вектор скорости в точке 2 отличается от вектора скорости в точке 1 по направлению на величину ΔV:
;
Для характеристики изменения вектора скорости на величину δv введем ускорение:
(2.4)
Вектор в любой точке траектории направлен по радиусуRкцентру окружности перпендикулярно к вектору скоростиV 2 . Поэтому ускорение, характеризующее при криволинейном движении изменение скоростипо направлению, называютцентростремительным или нормальным . Таким образом, движение точки по окружности с постоянной по модулю скоростью являетсяускоренным .
Если скорость изменяется не только по направлению, но и по модулю (величине), то кроме нормального ускорениявводят еще икасательное (тангенциальное) ускорение, которое характеризует изменение скорости по величине:
или
Направлен вектор по касательной в любой точке траектории (т.е. совпадает с направлением вектора). Угол между векторамииравен 90 0 .
Полное ускорение точки, движущейся по криволинейной траектории, определяется как векторная сумма (рис.2.1.).
.
Модуль вектора
.
Угловая скорость и угловое ускорение
При движении материальной точки по окружности радиус-векторR, проведенный из центра окружности О к точке, поворачивается на угол Δφ (рис.2.1). Для характеристики вращения вводятся понятия угловой скорости ω и углового ускорения ε.
Угол φ можно измерять в радианах. 1 рад равен углу, который опирается на дугу ℓ, равную радиусуRокружности, т.е.
илиℓ 12 = R φ (2.5.)
Продифференцируем уравнение (2.5.)
(2.6.)
Величина dℓ/dt=V мгн. Величину ω =dφ/dtназываютугловой скоростью (измеряется в рад/с). Получим связь между линейной и угловой скоростями:
Величина
ω векторная. Направление вектораопределяетсяправилом винта (буравчика)
:
оно совпадает с направлением перемещения
винта, ориентированного вдоль оси
вращения точки или тела и вращаемого в
направлении поворота тела (рис.2.2), т.е.
.
Угловым ускорением называется векторная величина производная от угловой скорости (мгновенное угловое ускорение)
, (2.8.)
Вектор совпадает с осью вращения и направлен в туже сторону, что и вектор, если вращение ускоренное, и в противоположную, если вращение замедленное.
Число оборотов n тела в единицу времени называют частотой вращения .
Время Т одного полного оборота тела называют периодом вращения . При этом R опишет угол Δφ=2π радиан
С учетом сказанного
, (2.9)
Уравнение (2.8) можно записать следующим образом:
(2.10)
Тогда тангенциальная составляющая ускорения
а =R(2.11)
Нормальное ускорение а n можно выразить следующим образом:
с учетом (2.7) и (2.9)
(2.12)
Тогда полное ускорение .
Для вращательного движения с постоянным угловым ускорением можно записать уравнение кинематики по аналогии с уравнением (2.1) – (2.3) для поступательного движения:
,
.
Важным частным случаем движения частицы по заданной траектории является движение по окружности. Положение частицы на окружности (рис. 46) можно задавать, указывая не расстояние от некоторой начальной точки А, а угол образуемый радиусом, проведенным из центра О окружности к частице, с радиусом, проведенным в начальную точку А.
Наряду со скоростью движения по траектории, которая определяется как
удобно ввести угловую скорость, характеризующую быстроту изменения угла
Скорость движения по траектории называют также линейной скоростью. Установим связь между линейной и угловой скоростями. Длина дуги I, стягивающей угол равна где - радиус окружности, а угол измерен в радианах. Поэтому и угловая скорость со связана с линейной скоростью соотношением
Рис. 46. Угол задает положение точки на окружности
Ускорение при движении по окружности, как и при произвольном криволинейном движении, имеет в общем случае две составляющие: тангенциальную, направленную по касательной к окружности и характеризующую быстроту изменения величины скорости и нормальную, направленную к центру окружности и характеризующую быстроту изменения направления скорости.
Значение нормальной составляющей ускорения, называемой в этом случае (движение по окружности) центростремительным ускорением, дается общей формулой (3) § 8, в которой теперь линейную скорость можно выразить через угловую скорость с помощью формулы (3):
Здесь радиус окружности, разумеется, одинаков для всех точек траектории.
При равномерном движении по окружности, когда значение постоянно, угловая скорость со, как видно из (3), тоже постоянна. В этом случае ее иногда называют циклической частотой.
Период и частота. Для характеристики равномерного движения по окружности наряду с со удобно использовать период обращения Т, определяемый как время, в течение которого совершается один полный оборот, и частоту - величину, обратную периоду Т, которая равна числу оборотов за единицу времени:
Из определения (2) угловой скорости следует связь между величинами
Это соотношение позволяет записать формулу (4) для центростремительного ускорения еще и в таком виде:
Отметим, что угловая скорость со измеряется в радианах в секунду, а частота - в оборотах в секунду. Размерности со и одинаковы так как эти величины различаются лишь числовым множителем
Задача
По кольцевой дороге. Рельсы игрушечной железной дороги образуют кольцо радиуса (рис. 47). Вагончик перемещается по ним, подталкиваемый стержнем который поворачивается с постоянной угловой скоростью вокруг точки лежащей внутри кольца почти у самых рельсов. Как изменяется скорость вагончика при его движении?
Рис. 47. К нахождению угловой скорости при движении по кольцевой дороге
Решение. Угол образуемый стержнем с некоторым направлением, изменяется со временем по линейному закону: . В качестве направления, от которого отсчитывается угол удобно взять диаметр окружности, проходящий через точку (рис. 47). Точка О - центр окружности. Очевидно, что центральный угол определяющий положение вагончика на окружности, в два раза больше вписанного угла опирающегося на ту же дугу: Поэтому угловая скорость со вагончика при движении по рельсам вдвое больше угловой скорости с которой поворачивается стержень:
Таким образом, угловая скорость со вагончика оказалась постоянной. Значит, вагончик движется по рельсам равномерно. Его линейная скорость неизменна и равна
Ускорение вагончика при таком равномерном движении по окружности всегда направлено к центру О, а его модуль дается выражением (4):
Посмотрите на формулу (4). Как ее следует понимать: ускорение все-таки пропорционально или обратно пропорционально ?
Объясните, почему при неравномерном движении по окружности угловая скорость со сохраняет свой смысл, а теряют смысл?
Угловая скорость как вектор. В некоторых случаях угловую скорость удобно рассматривать как вектор, модуль которого равен а неизменное направление перпендикулярно плоскости, в которой лежит окружность. С помощью такого вектора можно записать формулу, аналогичную (3), которая выражает вектор скорости частицы, движущейся по окружности.
Рис. 48. Вектор угловой скорости
Поместим начало отсчета в центр О окружности. Тогда при движении частицы ее радиус-вектор будет только поворачиваться с угловой скоростью со, а его модуль все время равен радиусу окружности (рис. 48). Видно, что вектор скорости направленный по касательной к окружности, можно представить как векторное произведение вектора угловой скорости со на радиус-вектор частицы:
Векторное произведение. По определению векторное произведение двух векторов представляет собой вектор, перпендикулярный плоскости, в которой лежат перемножаемые векторы. Выбор направления векторного произведения производится по следующему правилу. Первый сомножитель мысленно поворачивается в сторону второго, как если бы это была рукоятка гаечного ключа. Векторное произведение направлено в ту же сторону, куда при этом стал бы перемещаться винт с правой резьбой.
Если сомножители в векторном произведении поменять местами, то оно изменит направление на противоположное: Это значит, что векторное произведение некоммутативно.
Из рис. 48 видно, что формула (8) будет давать правильное направление для вектора если вектор со направлен именно так, как показано на этом рисунке. Поэтому можно сформулировать следующее правило: направление вектора угловой скорости совпадает с направлением движения винта с правой резьбой, головка которого поворачивается в ту же сторону, в которую движется частица по окружности.
По определению модуль векторного произведения равен произведению модулей перемножаемых векторов на синус угла а между ними:
В формуле (8) перемножаемые векторы со и перпендикулярны друг другу, поэтому как и должно быть в соответствии с формулой (3).
Что можно сказать о векторном произведении двух параллельных векторов?
Как направлен вектор угловой скорости стрелки часов? Чем различаются эти векторы для минутной и часовоой стрелок?
При описании движения точки по окружности мы будем характеризовать перемещение точки углом Δφ , который описывает радиус-вектор точки за время Δt . Угловое перемещение за бесконечно малый промежуток времени dt обозначается dφ .
Угловое перемещение – величина векторная. Определяется направление вектора (или ) по правилу буравчика: если вращать буравчик (винт с правосторонней резьбой) в направлении движения точки, то буравчик будет двигаться в направлении вектора углового смещения. На рис. 14 точка М движется по часовой стрелке, если смотреть на плоскость движения снизу. Если крутить буравчик в этом направлении, то вектор будет направлен вверх.
Таким образом, направление вектора углового перемещения определяется выбором положительного направления вращения. Положительное направление вращения определяется правилом буравчика с правосторонней резьбой. Однако с таким же успехом можно было взять буравчик с левосторонней резьбой. В этом случае направление вектора углового смещения было бы противоположным.
При рассмотрении таких величин, как скорость, ускорение, вектор смещения не возникал вопрос о выборе их направления: оно определялось естественным образом из природы самих величин. Такие вектора называются полярными. Вектора, подобные вектору углового перемещения, называются аксиальными, или псевдовекторами . Направление аксиального вектора определяется выбором положительного направления вращения. Кроме того, аксиальный вектор не имеет точки приложения. Полярные векторы , которые мы рассматривали до сих пор, приложены к движущейся точке. Для аксиального вектора можно лишь указать направление (ось, axis – лат.), вдоль которой он направлен. Ось, вдоль которой направлен вектор углового смещения, перпендикулярна плоскости вращения. Обычно вектор углового перемещения изображают на оси, проходящей через центр окружности (рис. 14), хотя его можно нарисовать в любом месте, в том числе на оси, проходящей через рассматриваемую точку.
В системе СИ углы измеряются в радианах. Радиан – это такой угол, длина дуги которого равна радиусу окружности. Таким образом, полный угол (360 0) равен 2π радиан.
Движение точки по окружности
Угловая скорость – векторная величина, численно равная углу поворота за единицу времени. Обозначается обычно угловая скорость греческой буквой ω. По определению, угловая скорость – это производная угла по времени:
. (19)
Направление вектора угловой скорости совпадает с направлением вектора углового перемещения (рис. 14). Вектор угловой скорости, так же, как и вектор углового перемещения, является аксиальным вектором.
Размерность угловой скорости – рад/с.
Вращение с постоянной угловой скоростью называется равномерным, при этом ω = φ/t.
Равномерное вращение можно характеризовать периодом обращения Т, под которым понимают время, за которое тело делает один оборот, т. е. поворачивается на угол 2π. Поскольку промежутку времени Δt = Т соответствует угол поворота Δφ = 2π, то
(20)
Число оборотов в единицу времени ν, очевидно, равно:
(21)
Величина ν измеряется в герцах (Гц). Один герц – это один оборот в секунду, или 2π рад/с.
Понятия периода обращения и числа оборотов в единицу времени можно сохранить и для неравномерного вращения, понимая под мгновенным значением T то время, за которое тело совершило бы один оборот, если бы оно вращалось равномерно с данным мгновенным значением угловой скорости, а под ν понимая то число оборотов, которое совершало бы тело за единицу времени при аналогичных условиях.
Если угловая скорость меняется со временем, то вращение называется неравномерным. В этом случае вводят угловое ускорение аналогично тому, как для прямолинейного движения вводилось линейное ускорение. Угловое ускорение – это изменение угловой скорости за единицу времени, вычисляется как производная угловой скорости по времени или вторая производная углового смещения по времени:
(22)
Так же, как и угловая скорость, угловое ускорение является векторной величиной. Вектор углового ускорения – аксиальный вектор, в случае ускоренного вращения направлен в ту же сторону, что и вектор угловой скорости (рис. 14); в случае замедленного вращения вектор углового ускорения направлен противоположно вектору угловой скорости.
При равнопеременном вращательном движении имеют место соотношения, аналогичные формулам (10) и (11), описывающим равнопеременное прямолинейное движение:
ω = ω 0 ± εt,
.
Законы, определяющие движение тела по окружности, аналогичны законам поступательного движения. Уравнения, описывающие вращательное движение, можно вывести из уравнений поступательного движения, произведя в последних следующие замены:
Если:
перемещение s
- угловое перемещение (угол поворота) ?
,
скорость u
- угловая скорость ?
,
ускорение a
- угловое ускорение ?
Угол поворота
Во всех уравнения вращательного движения углы задаются в радианах, сокращенно (рад) .
Если
?
- угловое перемещение в радианах,
s
- длина дуги, заключенной
между сторонами угла поворота,
r
- радиус,
то по определению радиана
Соотношение между единицами угла
Обратите внимание:
Наименование единицы радиан (рад) обычно указывается в формулах только в тех случаях, когда ее можно спутать с градусом. Поскольку радиан равен отношению длин двух отрезков
(1рад = 1м/ 1м = 1), он не имеет размерности.
Соотношение между угловой скоростью, угловым перемещением и временем для всех видов движения по окружности наглядно видны на графике угловой скорости (зависимость ? от t ). Поэтому графику можно определить, какой угловой скоростью обладает тело в тот или иной момент времени и на какой угол с момента начала движения оно повернулось (он характеризуется площадью под кривой).
Кроме того, для представления соотношений между названными величинами используют график углового перемещения (зависимость ? от t ) и график углового ускорения (зависимость ? от t ).
Число оборотов
Характеристикой всех видов вращения является число оборотов n или равноценная ей характеристика - частота f . Обе величины характеризуют число оборотов в единицу времени.
Единица СИ частоты (или числа оборотов)
В технике число оборотов обычно измеряется в оборотах в минуту (об/мин) = 1/мин.
Таким образом, величина, обратная числу оборотов, есть продолжительность одного оборота.
Если
n
- число оборотов,
f
- частота,
T
- продолжительность одного оборота, период,
?
- угловое перемещение,
N
- полное число оборотов,
t
- время, продолжительность вращения,
?
- угловая частота,
то
Период
Угловое перемещение
Угловое перемещение равно произведению полного числа оборотов на 2?:
Угловая скорость
Из формулы для одного оборота следует:
Обратите внимание:
формулы справедливы для всех видов вращательного движения - как для равномерного движения, так и для ускоренного. В них могут входить постоянные величины, средние значения, начальные и конечные значения, а также любые мгновенные значения.
вопреки своему названию число оборотов n
- это не число, а физическая величина.
следует различать число оборотов n
и полное число оборотов N
.
Равномерное движение тела по окружности
Говорят, что тело движется по окружности равномерно, если его угловая скорость постоянна, т.е. тело за равные промежутки времени поворачивается на один и тот же угол.
?
- угловая скорость (постоянная в течение времени t
)
?
- угловое перемещение
t
- время поворота на угол ?
Поскольку на графике угловой скорости площадь прямоугольника соответствует угловому перемещению, имеем:
Постоянная угловая скорость - есть отношение углового перемещения (угла поворота) ко времени, затраченному на это перемещение.
Единица СИ угловой скорости:
Равномерно ускоренное движение по окружности без начальной угловой скорости
Тело начинает двигаться из состояния покоя, и его угловая скорость равномерно возрастает.
?
- мгновенная угловая скорость тела в момент времени t
?
- угловое ускорение, постоянное
в течение времени t
?
t
, (?
в радианах)
t
- время
Поскольку на графике скорости угловое перемещение равно площади треугольника, имеем:
Поскольку вращение тела начинается из состояния покоя, изменение угловой скорости?? равно достигнутой в результате ускорения угловой скорости?. Поэтому формула принимает следующий вид:
Равномерно ускоренное движение по окружности с начальной угловой скоростью
Начальная скорость тела, равная ?0 в момент t = 0, изменяется равномерно на величину ?? . (Угловое ускорение при этом постоянно.)
?0
- начальная угловая скорость
?
- конечная угловая скорость
?
- угловое перемещение тела за время t
в радианах
t
- время
?
- угловое ускорение постоянное в течение времени t
Поскольку на графике скорости угловое перемещение соответствует площади трапеции под кривой скорости, имеем:
Так как площадь трапеции равна сумме площадей образующих ее треугольника и прямоугольника, получаем:
Совместив формулы мы получим
После преобразования получаем выражение, не содержащее времени:
Неравномерно ускоренное движение тела по окружности
Движение тела по окружности будет неравномерно ускоренным, если изменение угловой скорости происходит не пропорционально времени, т. е. если угловое ускорение не остается постоянным. В этом случае и угловая скорость и угловое ускорение являются функциями времени.
Связь величин ? , ? и ? представлена на соответствующих графиках.
Мгновенная угловая скорость
Мгновенной угловой скоростью называется первая производная функции ? = ? (t ) по времени.
Обратите внимание:
1)
чтобы вычислить мгновенную угловую скорость ?
, необходимо знать зависимость углового перемещения от времени.
2)
формула углового перемещения при равномерном движении тела по окружности и формула углового перемещения при равномерно ускоренном движении по окружности без начальной угловой скорости являются частными случаями формулы (2) соответственно для ?
= 0 и ?
= const.
Из формул следует:
Проинтегрировав обе части выражения, получим
Угловое перемещение есть интеграл по времени от угловой скорости.
Обратите внимание:
Для вычисления углового перемещения? необходимо знать зависимость угловой скорости от времени.
Средняя угловая скорость
Средняя угловая скорость для некоторого интервала времени
Среднее число оборотов определяется аналогично формуле:
Вращательное движение тела, формулы
Кроме того, эти величины связаны определенным образом с угловым перемещением ? , угловой скоростью ? и угловым ускорением ? .
Примечание:Формулы справедливы для постоянных, мгновенных и средних величин, во всех случаях движения тела по окружности.
Векторные величины, характеризующие вращательное движение тела
Определение:Если тело участвует одновременно в нескольких вращательных движениях, то результирующая угловая скорость определяется по правилу векторного (геометрического) сложения:
Величина результирующей угловой скорости определяется по аналогии с формулой (Сложение движений):
или, если оси вращения перпендикулярны друг другу
Примечание: Результирующее угловое ускорение определяется аналогичным образом. Графически результирующую можно найти как диагональ параллелограмма скоростей или ускорений.