Уравнение прямой – виды уравнения прямой: проходящее через точку, общее, каноническое, параметрическое и т.д. Прямая линия
Свойства прямой в евклидовой геометрии.
Через любую точку можно провести бесконечно много прямых.
Через любые две несовпадающие точки можно провести единственную прямую.
Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются
параллельными (следует из предыдущего).
В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:
- прямые пересекаются;
- прямые параллельны;
- прямые скрещиваются.
Прямая линия
— алгебраическая кривая первого порядка: в декартовой системе координат прямая линия
задается на плоскости уравнением первой степени (линейное уравнение).
Общее уравнение прямой.
Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
Ах + Ву + С = 0,
причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим
уравнением прямой.
В зависимости от значений постоянных А, В и С возможны следующие частные случаи:
. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат
. А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох
. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу
. В = С = 0, А ≠0 - прямая совпадает с осью Оу
. А = С = 0, В ≠0 - прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных
начальных условий.
Уравнение прямой по точке и вектору нормали.
Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)
перпендикулярен прямой, заданной уравнением
Ах + Ву + С = 0.
Пример. Найти уравнение прямой, проходящей через точкуА(1, 2) перпендикулярно вектору (3, -1).
Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С
подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно
С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.
Уравнение прямой, проходящей через две точки.
Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1)и M2 (x 2, y 2 , z 2), тогда уравнение прямой,
проходящей через эти точки:
Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На
плоскости записанное выше уравнение прямой упрощается:
если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .
Дробь = k называется угловым коэффициентом прямой.
Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).
Решение. Применяя записанную выше формулу, получаем:
Уравнение прямой по точке и угловому коэффициенту.
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить , то полученное уравнение называется
уравнением прямой с угловым коэффициентом k.
Уравнение прямой по точке и направляющему вектору.
По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание
прямой через точку и направляющий вектор прямой.
Определение. Каждый ненулевой вектор (α 1 , α 2), компоненты которого удовлетворяют условию
Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.
Ах + Ву + С = 0.
Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).
Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,
коэффициенты должны удовлетворять условиям:
1 * A + (-1) * B = 0, т.е. А = В.
Тогда уравнение прямой имеет вид:Ax + Ay + C = 0, или x + y + C / A = 0.
при х = 1, у = 2получаем С/ A = -3, т.е. искомое уравнение:
х + у - 3 = 0
Уравнение прямой в отрезках.
Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:
или , где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения
прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямойх - у + 1 = 0.Найти уравнение этой прямой в отрезках.
С = 1, , а = -1, b = 1.
Нормальное уравнение прямой.
Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется
нормирующем множителем, то получим
xcosφ + ysinφ - p = 0 -нормальное уравнение прямой.
Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.
р - длина перпендикуляра, опущенного из начала координат на прямую,
аφ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.
Пример. Дано общее уравнение прямой 12х - 5у - 65 = 0. Требуется написать различные типы уравнений
этой прямой.
Уравнение этой прямой в отрезках:
Уравнение этой прямой с угловым коэффициентом: (делим на 5)
Уравнение прямой
:
cos φ = 12/13; sin φ= -5/13; p = 5.
Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,
параллельные осям или проходящие через начало координат.
Угол между прямыми на плоскости.
Определение. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми
будет определяться как
Две прямые параллельны, если k 1 = k 2. Две прямые перпендикулярны,
если k 1 = -1/ k 2 .
Теорема.
Прямые Ах + Ву + С = 0и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты
А 1 = λА, В 1 = λВ. Если еще и С 1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых
находятся как решение системы уравнений этих прямых.
Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.
Определение. Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b
представляется уравнением:
Расстояние от точки до прямой.
Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0определяется как:
Доказательство. Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки Мна заданную
прямую. Тогда расстояние между точками Ми М 1:
(1)
Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:
Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно
заданной прямой. Если преобразовать первое уравнение системы к виду:
A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,
то, решая, получим:
Подставляя эти выражения в уравнение (1), находим:
Теорема доказана.
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Пусть на плоскости задана прямоугольная система координат O x y .
Теорема 1
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А, В, С.
Доказательство
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 (x 0 , y 0) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A (x - x 0) + B (y - y 0) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A (x - x 0) + B (y - y 0) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = (A , B) и M 0 M → = (x - x 0 , y - y 0) . Таким образом, множество точек M (x , y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = (A , B) . Можем предположить, что это не так, но тогда бы векторы n → = (A , B) и M 0 M → = (x - x 0 , y - y 0) не являлись бы перпендикулярными, и равенство A (x - x 0) + B (y - y 0) = 0 не было бы верным.
Следовательно, уравнение A (x - x 0) + B (y - y 0) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 (x 0 , y 0) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = (A , B) .
Пусть также существует некоторая точка M (x , y) – плавающая точка прямой. В таком случае, векторы n → = (A , B) и M 0 M → = (x - x 0 , y - y 0) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0
Перепишем уравнение A x + B y - A x 0 - B y 0 = 0 , определим C: C = - A x 0 - B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Определение 1
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y - 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = (2 , 3) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y - 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Определение 2Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А, В, С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение - C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек (x , y) , координаты которых равны одному и тому же числу - C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел (0 , 0) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Пример 1
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , - 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
A · 2 7 + C = 0
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = - 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x - 2 = 0
Ответ:
7 x - 2 = 0
Пример 2
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку (0 , 3) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки (0 , 3) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С: С = - 3 . Используем известные значения В и С, получаем требуемое уравнение прямой: y - 3 = 0 .
Ответ:
y - 3 = 0 .
Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 (x 0 , y 0) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A (x - x 0) + B (y - y 0) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 (x 0 , y 0) и имеет нормальный вектор n → = (A , B) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Пример 3
Даны точка М 0 (- 3 , 4) , через которую проходит прямая, и нормальный вектор этой прямой n → = (1 , - 2) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = - 2 , x 0 = - 3 , y 0 = 4 . Тогда:
A (x - x 0) + B (y - y 0) = 0 ⇔ 1 · (x - (- 3)) - 2 · y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x - 2 · y + C = 0 ⇔ x - 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 (- 3 , 4) , через которую проходит прямая. Координаты этой точки отвечают уравнению x - 2 · y + C = 0 , т.е. - 3 - 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x - 2 · y + 11 = 0 .
Ответ:
x - 2 · y + 11 = 0 .
Пример 4
Задана прямая 2 3 x - y - 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна - 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = - 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 - y 0 - 1 2 = 0
Определяем y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2
Ответ:
- 5 2
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x - x 1 a x = y - y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = - B y .
Это равенство возможно записать как пропорцию: x + C A - B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = - B y - C . Выносим – В за скобки, тогда: A x = - B y + C B .
Перепишем равенство в виде пропорции: x - B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Пример 5
Задано общее уравнение прямой 3 y - 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y - 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим - 3 за скобки; получаем: 0 x = - 3 y - 4 3 .
Запишем полученное равенство как пропорцию: x - 3 = y - 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x - 3 = y - 4 3 0.
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Пример 6
Прямая задана уравнением 2 x - 5 y - 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = - 1 5 + 2 · λ , λ ∈ R
Ответ:
x = 5 · λ y = - 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = - A x - C . Разделим обе части полученного равенство на B , отличное от нуля: y = - A B x - C B .
Пример 7
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x
Ответ:
y = - 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y:
A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1
Пример 8
Необходимо преобразовать общее уравнение прямой x - 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .
Разделим на -1/2 обе части равенства: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .
Ответ:
x - 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x (y - y 1) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0
Пример 9
Заданы параметрические уравнения прямой x = - 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0
Перейдем от канонического к общему:
x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0
Ответ:
y - 4 = 0
Пример 10
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0
Ответ:
1 3 x + 2 y - 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A (x - x 0) + B (y - y 0) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Пример 11
Задана прямая, параллельная прямой 2 x - 3 y + 3 3 = 0 . Также известна точка M 0 (4 , 1) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = (2 , - 3) : 2 x - 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0
Ответ:
2 x - 3 y - 5 = 0 .
Пример 12
Заданная прямая проходит через начало координат перпендикулярно прямой x - 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x - 2 3 = y + 4 5 .
Тогда n → = (3 , 5) . Прямая проходит через начало координат, т.е. через точку О (0 , 0) . Составим общее уравнение заданной прямой:
A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0
Ответ
: 3 x + 5 y = 0 .
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Пусть прямая проходит через точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Уравнение прямой, проходящей через точку М 1 , имеет вид у- у 1 = k (х - х 1), (10.6)
где k - пока неизвестный коэффициент.
Так как прямая проходит через точку М 2 (х 2 у 2), то координаты этой точки должны удовлетворять уравнению (10.6): у 2 -у 1 = k (х 2 -х 1).
Отсюда
находим
Подставляя найденное значениеk
в уравнение (10.6), получим уравнение
прямой, проходящей через точки М 1
и М 2:
Предполагается, что в этом уравнении х 1 ≠ х 2 , у 1 ≠ у 2
Если х 1 = х 2 , то прямая, проходящая через точки М 1 (х 1 ,у I) и М 2 (х 2 ,у 2) параллельна оси ординат. Ее уравнение имеет вид х = х 1 .
Если у 2 = у I , то уравнение прямой может быть записано в виде у = у 1 , прямая М 1 М 2 параллельна оси абсцисс.
Уравнение прямой в отрезках
Пусть
прямая пересекает ось Ох в точке М 1 (а;0),
а ось Оу – в точке М 2 (0;b).
Уравнение примет вид:
т.е.
.
Это уравнение называетсяуравнением прямой в отрезках, т.к. числа а и b указывают, какие отрезки отсекает прямая на осях координат.
Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
Найдем уравнение прямой, проходящей через заданную точку Мо (х О; у о) перпендикулярно данному ненулевому вектор n = (А; В).
Возьмем на прямой произвольную точку М(х; у) и рассмотрим вектор М 0 М (х - х 0 ; у - у о) (см. рис.1). Поскольку векторы n и М о М перпендикулярны, то их скалярное произведение равно нулю: то есть
А(х - хо) + В(у - уо) = 0. (10.8)
Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору .
Вектор n= (А; В), перпендикулярный прямой, называется нормальным нормальным вектором этой прямой .
Уравнение (10.8) можно переписать в виде Ах + Ву + С =0 , (10.9)
где А и В координаты нормального вектора, С = -Ах о - Ву о - свободный член. Уравнение (10.9) есть общее уравнение прямой (см. рис.2).
Рис.1 Рис.2
Канонические уравнения прямой
,
Где
- координаты точки, через которую проходит
прямая, а
- направляющий вектор.
Кривые второго порядка Окружность
Окружностью называется множество всех точек плоскости, равноотстоящих от данной точки, которая называется центром.
Каноническое уравнение круга радиусаR с
центром в точке
:
В частности, если
центр кола совпадает с началом координат,
то уравнение будет иметь вид:
Эллипс
Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точеки
,
которые называются фокусами, есть
величина постоянная
,
большая чем расстояние между фокусами
.
Каноническое уравнение эллипса,
фокусы которого лежат на оси Ох, а начало
координат посредине между фокусами
имеет видг
де
aдлина большой полуоси;b– длина малой полуоси (рис. 2).
Зависимость между параметрами эллипса
и
выражается соотношением:
(4)
Эксцентриситетом эллипсаназывается отношение межфокусного расстояния2ск большой оси2а:
Директрисамиэллипса называются прямые, параллельные
оси Оу, которые находятся от этой оси
на расстоянии.
Уравнения директрис:.
Если в уравнении
эллипса
,
тогда фокусы эллипса находятся на оси
Оу.
Итак,
Эта статья является частью темы уравнение прямой на плоскости . Здесь мы разберем со всех сторон: начнем с доказательства теоремы, которая задает вид общего уравнения прямой, далее рассмотрим неполное общее уравнение прямой, приведем примеры неполных уравнений прямой с графическими иллюстрациями, в заключении остановимся на переходе от общего уравнения прямой к другим видам уравнения этой прямой и приведем подробные решения характерных задач на составление общего уравнения прямой.
Навигация по странице.
Общее уравнение прямой - основные сведения.
Разберем этот алгоритм при решении примера.
Пример.
Напишите параметрические уравнения прямой, которая задана общим уравнение прямой .
Решение.
Сначала приведем исходное общее уравнение прямой к каноническому уравнению прямой:
Теперь принимаем левую и правую части полученного уравнения равными параметру . Имеем
Ответ:
Из общего уравнения прямой вида получить уравнение прямой с угловым коэффициентом возможно лишь тогда, когда . Что нужно сделать для перехода? Во-первых, в левой общего уравнения прямой оставить только слагаемое , остальные слагаемые нужно перенести в правую часть с противоположным знаком: . Во-вторых, разделить обе части полученного равенства на число B
, которое отлично от нуля,
. И все.
Пример.
Прямую в прямоугольной системе координат Oxy задает общее уравнение прямой . Получите уравнение этой прямой с угловым коэффициентом.
Решение.
Проведем необходимые действия: .
Ответ:
Когда прямая задана полным общим уравнением прямой, то легко получить уравнение прямой в отрезках вида . Для этого переносим число С
в правую часть равенства с противоположным знаком, делим обе части полученного равенства на –С
, и в заключении переносим в знаменатели коэффициенты при переменных x
и y
:
Рассмотрим, как составить уравнение прямой, проходящей через две точки, на примерах.
Пример 1.
Составить уравнение прямой, проходящей через точки A(-3; 9) и B(2;-1).
1 способ — составим уравнение прямой с угловым коэффициентом.
Уравнение прямой с угловым коэффициентом имеет вид . Подставив координаты точек A и B в уравнение прямой (x= -3 и y=9 — в первом случае, x=2 и y= -1 — во втором), получаем систему уравнений, из которой находим значения k и b:
Сложив почленно 1-е и 2-е уравнения, получим: -10=5k, откуда k= -2. Подставив во второе уравнение k= -2, найдём b: -1=2·(-2)+b, b=3.
Таким образом, y= -2x+3 — искомое уравнение.
2 способ — составим общее уравнение прямой.
Общее уравнение прямой имеет вид . Подставив координаты точек A и B в уравнение, получаем систему:
Поскольку количество неизвестных больше количества уравнений, система не разрешима. Но можно все переменные выразить через одну. Например, через b.
Умножив первое уравнение системы на -1 и сложив почленно со вторым:
получим: 5a-10b=0. Отсюда a=2b.
Подставим полученное выражение во второе уравнение: 2·2b -b+c=0; 3b+c=0; c= -3b.
Подставляем a=2b, c= -3b в уравнение ax+by+c=0:
2bx+by-3b=0. Осталось разделить обе части на b:
Общее уравнение прямой легко приводится к уравнению прямой с угловым коэффициентом:
3 способ — составим уравнение прямой, проходящей через 2 точки.
Уравнение прямой, проходящей через две точки, имеет :
Подставим в это уравнение координаты точек A(-3; 9) и B(2;-1)
(то есть x 1 = -3, y 1 =9, x 2 =2, y 2 = -1):
и упростим:
откуда 2x+y-3=0.
В школьном курсе чаще всего используется уравнение прямой с угловым коэффициентом. Но самый простой способ — вывести и использовать формулу уравнения прямой, проходящей через две точки.
Замечание.
Если при подстановке координат заданных точек один из знаменателей уравнения
окажется равным нулю, то искомое уравнение получается приравниваем к нулю соответствующего числителя.
Пример 2.
Составить уравнение прямой, проходящей через две точки C(5; -2) и D(7;-2).
Подставляем в уравнение прямой, проходящей через 2 точки, координаты точек C и D.