Время установления затухающих колебаний. Затухающие колебания
Копилка полезных уроков

Время установления затухающих колебаний. Затухающие колебания

Затухающие колебания

Затухающие колебания пружинного маятника

Затухающие колебания

- колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание - уменьшение уровня сигнала до полной неслышимости.

Затухающие колебания пружинного маятника

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Корни которого вычисляются по следующей формуле

Решения

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом - экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где - собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

  • Декремент затухания

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.


Wikimedia Foundation . 2010 .

Смотреть что такое "Затухающие колебания" в других словарях:

    Затухающие колебания

    - Затухающие колебания. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ, колебания, амплитуда которых A уменьшается с течением времени вследствие потерь энергии: превращения энергии колебаний в тепло в результате трения в механических системах (например, в точке подвеса… … Иллюстрированный энциклопедический словарь

    Собственные колебания, амплитуда А которых убывает со временем t по закону экспоненты А(t) = Аоexp (?t) (? показатель затухания из за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Большой Энциклопедический словарь

    Колебания, амплитуда которых постепенно уменьшается, напр. колебания маятника, испытывающего сопротивление воздуха и трение в подвесе. Все свободные колебания, происходящие в природе, являются в большей или меньшей мере З. К. Электрические З. К.… … Морской словарь

    затухающие колебания

    - Механические колебания с уменьшающимися во времени значениями размаха обобщенной координаты или ее производной по времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    Затухающие колебания

    - (ВИБРАЦИЯ) колебания (вибрация) с уменьшающимися значениями размаха … Российская энциклопедия по охране труда

    Собственные колебания системы, амплитуда А которых убывает со временем t по закону экспоненты А(t) = А0ехр(?α t) (α показатель затухания) из–за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Энциклопедический словарь

    Затухающие колебания

    - 31. Затухающие колебания Колебания с уменьшающимися значениями размаха Источник … Словарь-справочник терминов нормативно-технической документации

    Собственные колебания системы, амплитуда А к рых убывает со временем t по закону экспоненты A(t) = = Аоехр(at) (a показатель затухания) из за диссипации энергии благодаря силам вязкого трения для механич. 3. к. и омическому сопротивлению для эл … Естествознание. Энциклопедический словарь

    затухающие колебания

    - silpstantieji virpesiai statusas T sritis automatika atitikmenys: angl. damped oscillation vok. gedämpfte Schwingung, f rus. затухающие колебания, n pranc. oscillations amorties, f; oscillations décroissantes, f … Automatikos terminų žodynas

    затухающие колебания

    - slopinamieji virpesiai statusas T sritis fizika atitikmenys: angl. damped oscillations; damped vibrations; dying oscillations vok. abklingende Schwingungen, f; gedämpfte Schwingungen, f rus. затухающие колебания, n pranc. oscillations amorties, f … Fizikos terminų žodynas

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна- это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

В реальной действительности свободные колебания происходят в условиях действия сил сопротивления. Диссипативные силы ведут к уменьшению амплитуды колебаний. Колебания, амплитуда которых с течением времени становится меньше в результате потерь энергии, называются затухающими.

Затухающие механические колебания

ОПРЕДЕЛЕНИЕ

Физическую величину, которая характеризует скорость затухания колебаний, называют коэффициентом затухания. Коэффициент затухания могут обозначать по-разному: и т.д. При условии пропорциональности сил трения скорости движения тела:

где — является обобщенным коэффициентом трения, коэффициент затухания считают равным:

где — масса тела, совершающего колебания.

Дифференциальное уравнение колебаний при наличии затухания будет иметь вид:

— циклическая частота свободных колебаний системы при отсутствии трения.

Уравнение затухающих колебаний:

где — частота затухающих колебаний, — амплитуда затухающих колебаний. — постоянная величина, которая зависит от выбора начала отсчета времени.

Коэффициент затухания можно определить как величину обратную времени () за которое амплитуд (A) уменьшается в e раз:

где — время релаксации. То есть можно записать:

Период затухающих колебаний равен:

при несущественном сопротивлении среды, если выполняется неравенство: период колебаний можно вычислять при помощи формулы:

При увеличении коэффициента затухания период колебаний растет. Надо заметить, что понятие период затухающих колебаний не совпадает с понятием незатухающих колебаний, так как система при наличии затухания никогда не возвращается в исходное состояние. Период затухающих колебаний — это минимальный промежуток времени в течение которого, система два раза проходит положение равновесия в одном направлении.

С увеличением коэффициента затухания колебаний частота колебаний уменьшается. Если , то частота затухающих колебаний станет равна нулю, при этом период увеличивается до бесконечности. Такие колебания теряют периодичность и называются апериодическими. При равенстве коэффициента затухания собственной частоте колебаний параметры системы называют критическими.

Коэффициент затухания колебаний связан с логарифмическим декрементом затухания () выражением:

Затухающие электрические колебания

Любой электрический контур, существующий в реальной действительности, имеет активное сопротивление, следовательно, энергия, запасённая в нем с течением времени расходуется на этом сопротивлении, так как происходит его нагревание.

При этом коэффициент затухания для электрического контура вычисляют как:

где R — сопротивление, L- индуктивность контура.

Частота в электромагнитном контуре представлена формулой:

Для RLC контура критическим сопротивлением () при котором колебания становятся апериодическими является сопротивление, равное:

находят при

Единицы измерения коэффициента затухания колебаний

Основной единицей измерения коэффициента затухания в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Каков коэффициент затухания, если амплитуда колебаний маятника за время t=10 c. уменьшается в 4 раза?
Решение Запишем уравнение затухающих колебаний маятника:

По одному из определений коэффициента затухания:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Колебательный контур состоит из катушки индуктивности L, конденсатора C и сопротивления R (рис.1). Через какое число полных колебаний (N) амплитуда тока в контуре уменьшится в e -раз?

Решение Введем следующие обозначения: — начальное значение амплитуды силы тока, — амплитуда силы тока через N колебаний, тогда можно записать:

В реальных колебательных системах кроме квазиупругих сил присутствуют силы сопротивления среды. Наличие сил трения приводит к рассеянию (диссипации) энергии и уменьшению амплитуды колебаний. Замедляя движение, силы трения увеличивают период, т.е. уменьшает частоту колебаний. Такие колебания не будут гармоническими.

Колебания с непрерывно уменьшающейся во времени амплитудой вследствие рассеяния энергии называются затухающими . При достаточно малых скоростях сила трения пропорциональна скорости тела и направлена против движения

где r– коэффициент трения, зависящий от свойств среды, формы и размеров движущегося тела. Дифференциальное уравнение затухающих колебаний при наличии сил трения будет иметь вид:

или
(21)

где
- коэффициент затухания,

- собственная круговая частота свободных колебаний при отсутствии сил трения.

Общим решением уравнения (21) в случае малых затуханий (
) является:

Оно отличается от гармонического (8) тем, что амплитуда колебаний:

(23)

является убывающей функцией времени, а круговая частота связана с собственной частотойи коэффициентом затуханиясоотношением:

. (24)

Период затухающих колебаний равен:

. (25)

Зависимость смещения Х от tзатухающих колебаний представлена на рис.4.

Cтепень убывания амплитуды определяется коэффициентом затухания.

За время
амплитуда (23) уменьшается в е ≈ 2,72 раз. Это времяестественного затухания называютвременем релаксации. Следовательно, коэффициент затухания есть величина, обратная времени релаксации:

.(26)

Скорость уменьшения амплитуды колебаний характеризуется логарифмическим декрементом затухания. ПустьА(t) и А(t+T) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на один период. Тогда отношение:

(27)

называется декрементом затухания, который показывает, во сколько раз уменьшается амплитуда колебаний за время, равное периоду. Натуральный логарифм этого отношения:

(28)

называется логарифмическим декрементом затухания. Здесь, N e – число колебаний, совершаемых за время уменьшения амплитуды в е раз, т.е. за время релаксации.

Таким образом, логарифмический декремент затухания есть величина, обратная числу колебаний, по прошествии которых амплитуда колебаний уменьшается в е раз.

Скорость уменьшения энергии колебательной системы характеризуется добротностью Q.Добротность колебательной системы- величина, пропорциональная отношению полной энергии Е(t) колебательной системы к энергии (-Е), теряемой за период Т:

(29)

Полная энергия колебательной системы в произвольный момент времени и при любом значении Х имеет вид:

(30)

Так как энергия пропорциональна квадрату амплитуды, энергия затухающих колебаний уменьшается пропорционально величине
, можно написать:

. (31)

Тогда, согласно определению, выражение для добротности колебательной системы будет иметь вид:

Здесь учтено, что при малых затуханиях (1): 1-е -2   2.

Следовательно, добротность пропорциональна числу колебаний N e , совершаемых системой за время релаксации.

Добротность колебательных систем может сильно различаться, например, добротность физического маятника Q~ 10 2 , а добротность атома, который тоже является колебательной системой, достигаетQ~ 10 8 .

В заключение отметим, что при коэффициенте затухания β=ω 0 период становится бесконечным Т =∞ (критическое затухание). При дальнейшем увеличении β период Т становится мнимым, а затухание движения происходит без колебаний, как говорят, апериодически. Этот случай движения изображен на рис.5. Критическое затухание (успокоение) происходит за минимальное время и имеет важное значение в измерительных приборах, например, в баллистических гальванометрах.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯИ РЕЗОНАНС

Если на тело с массой m действуют упругая сила F у = -kX, сила трения
и внешняя периодическая сила
, то оно совершает вынужденные колебания. В этом случае дифференциальное уравнение движения имеет вид:

где
,
- коэффициент затухания,
- собственная частота свободных незатухающих колебаний тела,F 0 – амплитуда, ω – частота периодической силы.

В начальный момент времени работа внешней силы превосходит энергию, которая расходуется на трение (рис. 6). Энергия и амплитуда колебаний тела будет возрастать до тех пор, пока вся сообщаемая внешней силой энергия не будет целиком расходоваться на преодоление трения, которое пропорционально скорости. Поэтому устанавливается равновесие, при котором сумма кинетической и потенциальной энергии оказывается постоянной. Это условие характеризует стационарное состояние системы.

В таком состоянии движение тела будет гармоническим с частотой, равной частоте внешнего возбуждения, но вследствие инерции тела его колебания будут сдвинуты по фазе по отношению к мгновенному значению внешней периодической силы:

X = AСos(ωt + φ). (34)

В отличие от свободных колебаний амплитуда А и фаза  вынужденных колебаний зависят не от начальных условий движения, а будут определяться только свойствами колеблющейся системы, амплитудой и частотой вынуждающей силы:

, (35)

. (36)

Видно, что амплитуда и сдвиг по фазе зависят от частоты вынуждающей силы (рис.7, 8).

Характерной особенностью вынужденных колебаний является наличие резонанса. Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте свободных незатухающих колебаний тела ω 0 носит названиемеханического резонанса . Амплитуда колебаний тела при резонансной частоте
достигает максимального значения:


(37)

По поводу резонансных кривых (см. рис. 7) сделаем следующие замечания. Если ω→ 0, то все кривые (см. также (35)) приходят к одному и тому же, отличному от нуля, предельному значению
, так называемомустатистическому отклонению. Если ω→ ∞, то все кривые асимптотически стремятся к нулю.

При условии малого затухания (β 2 ‹‹ω 0 2) резонансная амплитуда (см.(37))

(37а)

При этом условии возьмем отношение резонансного смещения к статическому отклонению:

из которого видно, что относительное увеличение амплитуды колебаний при резонансе определяется добротностью колебательной системы. Здесь добротность является, по сути, коэффициентом усиления отклика
системы и при малом затухании может достигать больших значений.

Это обстоятельство обусловливает огромное значение явления резонанса в физике и технике. Его используют, если хотят усилить колебания, например, в акустике – для усиления звучания музыкальных инструментов, в радиотехнике – для выделения нужного сигнала из множества других, отличающихся по частоте. Если резонанс можетпривести к нежелательному росту колебаний, пользуются системой с малой добротностью.

СВЯЗАННЫЕ КОЛЕБАНИЯ

Источником внешней периодической силы может служить вторая колебательная система, упруго связанная с первой. Обе колебательные системы могут действовать одна на другую. Так, например, случай двух связанных маятников (рис. 9).

Система может совершать как синфазные (рис. 9б), так и противофазные (рис. 9с) колебания. Такие колебания называются нормальным типом или нормальной модой колебаний и характеризуются своей собственной нормальной частотой. При синфазных колебаниях смещения маятников во все моменты времени Х 1 = Х 2 , а частота ω 1 точно такая же, как частота отдельно взятого маятника
. Это объясняется тем, что легкая пружина находится в свободном состоянии и не оказывает никакого влияния на движение. При противофазных колебаниях во все моменты времени – Х 1 = Х 2 . Частота таких колебаний больше и равна
, так как пружина, обладающая жесткостьюk и осуществляющая связь, все время находится то в растянутом, то в сжатом состоянии.

Л
юбое состояние нашей связанной системы, в том числе и начальное смещение Х (рис. 9а), можно представить в виде суперпозиции двух нормальных мод:

Если привести систему в движение из начального состояния Х 1 = 0,
, Х 2 = 2А,
,

то смещения маятников будут описываться выражениями:

На рис. 10 представлено изменение смещения отдельных маятников во времени.

Частота колебаний маятников равна средней частоте двух нормальных мод:

, (39)

а их амплитуда изменяется по закону синуса или конуса с меньшей частотой, равной половине разности частоты нормальных мод:

. (40)

Медленное изменение амплитуды с частотой, равной половине разности частот нормальных мод, называется биениями двух колебаний с почти одинаковыми частотами. Частота “биений” равна разности ω 1 –ω 2 частот, (а не половине этой разности), поскольку максимум амплитуды 2А достигается дважды за период, соответствующий частоте

Отсюда период биений оказывается равным:

(41)

При биениях между маятниками происходит обмен энергией. Однако полный обмен энергией возможен только тогда, когда обе массы одинаковы и отношение (ω 1 +ω 2 / ω 1 -ω 2) равно целому числу. Необходимо отметить один важный момент: хотя отдельные маятники могут обмениваться энергией, обмен энергией между нормальными модами отсутствует.

Наличие таких колеблющихся систем, которые взаимодействуют между собой и способны передавать друг другу свою энергию, составляют основу волнового движения.

Колеблющееся материальное тело, помещенное в упругую среду, увлекает за собой и приводит в колебательное движение прилегающие к нему частицы среды. Благодаря наличию упругих связей между частицами колебания распространяются с характерной для данной среды скоростью по всей среде.

Процесс распространения колебаний в упругой среде называется волной .

Различают два основных типа волн: продольные и поперечные. В продольных волнах частицы среды колеблются вдоль направления распространения волны, а в поперечных – перпендикулярно к направлению распространения волны. Не во всякой упругой среде возможно распространение поперечной волны. Поперечная упругая волна возможна лишь в таких средах, в которых имеет место упругая деформация сдвига. Например, в газах и жидкостях распространяются только продольные упругие волны (звук).

Геометрическое место точек среды, до которых к данному моменту времени дошло колебание, называется фронтом волны . Фронт волны отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникали. В зависимости от формы фронта различают волны плоские, сферические, цилиндрические и т.д.

Уравнение плоской волны, распространяющейся без потерь в однородной среде, имеет вид:
, (42)

где ξ(Х,t) – смещение частиц среды с координатой Х от положения равновесия в момент времени t, А – амплитуда,
- фаза волны,
- круговая частота колебания частиц среды,v – скорость распространения волны.

Длиной волны λ называется расстояние между точками, колеблющимися с разностью фаз 2π, другими словами, длиной волны называется путь, проходимый любой фазой волны за один период колебаний:

фазовая скорость, т.е. скорость распространения данной фазы:

λ / Т (44)

Волновое число – число длин волн, укладывающихся на длине 2π единиц:

k = ω / v = 2π / λ. (45)

Подставляя эти обозначения в (42), уравнение плоской бегущей монохроматической волныможно представить в виде:

(46)

Отметим, что уравнение волны (46) обнаруживает двойную периодичность по координате и времени. Действительно, фазы колебаний совпадают при изменении координаты на λ и при изменении времени на период Т. Поэтому изобразить графически волну на плоскости нельзя. Часто фиксируют время t и на графике представляют зависимость смещения ξ от координаты Х, т.е. мгновенное распределение смещений частиц среды вдоль направления распространения волны (рис.11). Разность фаз Δφ колебаний точек среды зависит от расстояния ΔХ =Х 2 – Х 1 между этими точками:

(47)

Если волна распространяется противоположно направлению Х, то уравнение обратной волны запишется в виде:

ξ (Х,t) = АСos(ωt + kX). (48)

СТОЯЧИЕ ВОЛНЫ – это результат особого вида интерференции волн. Они образуются при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Уравнения двух плоских волн, распространяющихся вдоль оси Х в противоположных направлениях, имеют вид:

ξ 1 =АСos(ωt – kX)

ξ 2 = AСos(ωt + kX). (49)

Складывая эти уравнения по формуле суммы косинусов и учитывая, что k = 2π / λ, получим уравнение стоячей волны:

. (50)

Множитель Сos ωt показывает, что в точках среды возникает колебание той же частоты ω с амплитудой
, зависящей от координаты Х рассматриваемой точки. В точках среды, где:
, (51)

амплитуда колебаний достигает максимального значения, равного 2А. Эти точки называются пучностями.

Из выражения (51) можно найти координаты пучностей:
(52)

В точках, где
(53) амплитуда колебаний обращается в нуль. Эти точки называютсяузлами.

Координаты узлов:
. (54)

Расстояния между соседними пучностями и соседними узлами одинаковы и равны λ/2. Расстояние между узлом и соседней пучностью равно λ / 4. При переходе через узел множитель
меняет знак, поэтому фазы колебаний по разные стороны от узла отличаются на π, т.е. точки, лежащие по разные стороны от узла, колеблются в противофазе. Точки, заключенные между двумя соседними узлами, колеблются с разными амплитудами, но с одинаковыми фазами.

Распределение узлов и пучностей в стоячей волне зависит от условий, имеющих место на границе раздела двух сред, от которой происходит отражение. Если отражение волны происходит от среды более плотной, то фаза колебаний в месте отражения волны меняется на противоположную или, как говорят, теряется половина волны. Поэтому, в результате сложения колебаний противоположных направлений смещение на границе равно нулю, т.е. имеет место узел (рис. 12).При отражении волны от границы менее плотной среды фаза колебаний в месте отражения остается без изменения и у границы складываются колебания с одинаковыми фазами – получается пучность.

В стоячей волне нет перемещения фаз, нет распространения волны, нет переноса энергии, с чем и связано название такого типа волн.

Похожие публикации

ДАЛЬШЕ