Введение в химию белков. Роль белков в организме, природные источники белков Химическое строение белка
Копилка полезных уроков

Введение в химию белков. Роль белков в организме, природные источники белков Химическое строение белка

    Классификация белков.

    Состав и строение

    пептидная связь

    элементарный состав

    молекулярная масса

    аминокислоты

    Химические и физические свойства.

    Значение белков.

Список использованной литературы.

Введение

Белки -

высокомолекулярные азотистые органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Белки – основная и необходимая составная часть всех организмов. Именно Белки осуществляют обмен веществ и энергетические превращения, неразрывно связанные с активными биологическими функциями. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков (40-50%), причем растительному миру свойственно отклонение от этой средней величины в сторону понижения, а животному – повышения. Микроорганизмы обычно богаче белком (некоторые же вирусы являются почти чистыми белками). Таким образом, в среднем можно принять, что 10% биомассы на Земле представлено белком, то есть его количество измеряется величиной порядка 10 12 - 10 13 тонн. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение, и другие) обеспечиваются деятельностью ферментов, являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, например сократительный белок мышц (актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий) , покровы организма (кожа, волосы, ногти и т.п.) , состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества. Роль белков в живом организме подчеркивается уже самим их названием «протеины» (в переводе с греческого protos – первый, первичный) , предложенным в 1840 голландским химиком Г. Мульдером, который обнаружил, что в тканях животных и растений содержатся вещества, напоминающие по своим свойствам яичный белок. Постепенно было установлено, что белки представляют собой обширный класс разнообразных веществ, построенных по одинаковому плану. Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существования белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.

Классификация белков.

Из-за относительно больших размеров белковых молекул, сложности их строения и отсутствия достаточно точных данных о структуре большинства белков еще нет рациональной химической классификации белков. Существующая классификация в значительной мере условна и построена главным образом на основании физико-химических свойств белков, источников их получения, биологической активности и других, нередко случайных, признаков. Так, по физико-химическим свойствам белки делят на фибриллярные и глобулярные, на гидрофильные(растворимые) и гидрофобные (нерастворимые) и т.п. По источнику получения белки подразделяют на животные, растительные и бактериальные; на белки мышечные, нервной ткани, кровяной сыворотки и т.п.; по биологической активности – на белки-ферменты, белки-гормоны, структурные белки, сократительные белки, антитела и т.д. Следует, однако, иметь в виду, что из-за несовершенства самой классификации, а также вследствие исключительного многообразия белков многие из отдельных белков не могут быть отнесены ни к одной из описываемых здесь групп.

Все белки принято делить на простые белки,или протеины, и сложные белки, или протеиды (комплексы белков с небелковыми соединениями).Простые белки являются полимерами только аминокислот; сложные, помимо остатков аминокислот, содержат также небелковые, так называемые простетические группы.

Гистоны

Имеют сравнительно низкую молекулярную массу (12-13 тыс.), с преобладанием щелочных свойств. Локализованы в основном в ядрах клеток. Растворимы в слабых кислотах, осаждаются аммиаком и спиртом. Имеют только третичную структуру. В естественных условиях прочно связаны с ДНК и входят в состав нуклеопротеидов. Основная функция - регуляция передачи генетической информации с ДНК и РНК (возможна блокировка передачи).

Протамины

Самая низкая молекулярная масса (до 12 тыс.). Проявляет выраженные основные свойства. Хорошо растворимы в воде и слабых кислотах. Содержатся в половых клетках и составляют основную массу белка хроматина. Как и гистоны образуют комплекс с ДНК, функция - придают ДНК химическую устойчивость.

Глютелины

Растительные белки, содержащиеся в клейковине семян злаковых и некоторых других, в зеленых частях растений. Нерастворимые в воде, растворах солей и этанола, но хорошо растворимы в слабых растворах щелочей. Содержат все незаменимые аминокислоты, являются полноценными продуктами питания.

Проламины

Растительные белки. Содержатся в клейковине злаковых растений. Растворимы только в 70%-м спирте (это объясняется высоким содержанием пролина и неполярных аминокислот).

Протеиноиды

Белки опорных тканей (кость, хрящ, связки, сухожилия, ногти, волосы). Нерастворимые или трудно растворимые в воде, солевых и водно-спиртовых смесях белки с высоким содержанием серы. К протеиноидам относятся кератин, коллаген, фиброин.

Альбумины

Невысокой молекулярной массой (15-17 тыс.). Характерны кислые свойства. Растворимы в воде, и слабых солевых растворах. Осаждаются нейтральными солями при 100%-м насыщении. Участвуют в поддержании осмотического давления крови, транспортируют с кровью различные вещества. Содержатся в сыворотке крови, молоке, яичном белке.

Глобулины

Молекулярная масса до 100 тыс.. В воде нерастворимы, но растворимы в слабых солевых растворах и осаждаются в менее концентрированных растворах (уже при 50%-м насыщении). Содержатся в семенах растений, особенно в бобовых и масленичных; в плазме крови и в некоторых других биологических жидкостях. Выполняющие функцию иммунной защиты, обеспечивают устойчивость организма к вирусным инфекционным заболеваниям.

Сложные белки делят на ряд классов в зависимости от характера простетической группы.

Фосфопротеины

Имеют в качестве небелкового компонента фосфорную кислоту. Представителями данных белков являются казеиноген молока, вителлин (белок желтков яиц). Такая локализация фосфопротеидов свидетельствует о важном их значении для развивающегося организма. У взрослых форм эти белки присутствуют в костной и нервной тканях.

Липопротеины

Сложные белки, простетическая группа которых образована липидами. По строению это небольшого размера (150-200 нм) сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть - липидами и их производными. Основная функция липопротеинов - транспорт по крови липидов. В зависимости от количества белка и липидов, липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и высокой плотности (ЛПВП), которые иногда обозначаются как - и -липопротеиды.

Металлопротеины

Гликопротеины

Простетическая группа представлена углеводами и их производными. Исходя из химического строения углеводного компонента, выделяют 2 группы:

Истинные - в качестве углеводного компонента наиболее часто встречаются моносахариды. Протеогликаны- построены из очень большого числа повторяющихся единиц, имеющих дисахаридный характер (гиалуроновая кислота, гипарин, хондроитин, каротинсульфаты).

Функции: структурно-механическую (имеются в коже, хряще, сухожилиях); каталитическую (ферменты); защитную; участие в регуляции клеточного деления.

Хромопротеины

Выполняют ряд функций: участие в процессе фотосинтеза и окислительно-восстановительных реакциях, транспорт С и СО 2 . Являются сложными белками, простетическая группа которых представлена окрашенными соединениями.

Нуклеопротеины

Роль протеистической группы выполняет ДНК или РНК. Белковая часть представлена в основном гистонами и протаминами. Такие комплексы ДНК с протаминами обнаружены в сперматозоидах, а с гистонами - в соматических клетках, где молекула ДНК “намотана” вокруг молекул белка-гистона. Нуклепротеинами по своей природе являются вне клетки вирусы - это комплексы вирусной нуклеиновой кислоты и белковой оболочки - капсида.


В основе жизнедеятельности клетки лежат биохимические процессы, протекающие на молекулярном уровне и служащие предметом изучения биохимии. Соответственно и явления наследственности и изменчивости тоже связаны с молекулами органических веществ, и в первую очередь с нуклеиновыми кислотами и белками.

Состав белков

Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев - аминокислот. Такие вещества, состоящие из повторяющихся элементарных звеньев - мономеров, называются полимерами. Соответственно белки можно назвать полимерами, мономерами которых служат аминокислоты.

Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своем составе аминной группы NHy, обладающей основными свойствами, и карбоксильной группы СООН, имеющей кислотные свойства. Все аминокислоты имеют одинаковую группу NH2-СН-СООН и отличаются друг от друга химической группой, называемой радикалом - R. Соединение аминокислот в полимерную цепь происходит благодаря образованию пептидной связи (СО - NH) между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом выделяется молекула воды. Если образовавшаяся полимерная цепь короткая, она называется олигопептидной, если длинная - полипептидной.

Строение белков

При рассмотрении строения белков выделяют первичную, вторичную, третичную структуры.

Первичная структура определяется порядком чередования аминокислот в цепи. Изменение в расположении даже одной аминокислоты ведет к образованию совершенно новой молекулы белка. Число белковых молекул, которое образуется при сочетании 20 разных аминокислот, достигает астрономической цифры.

Если бы большие молекулы (макромолекулы) белка располагались в клетке в вытянутом состоянии, они занимали бы в ней слишком много места, что затруднило бы жизнедеятельность клетки. В связи с этим молекулы белка скручиваются, изгибаются, свертываются в самые различные конфигурации. Так на основе первичной структуры возникает вторичная структура - белковая цепь укладывается в спираль, состоящую из равномерных витков. Соседние витки соединены между собой слабыми водородными связями, которые при многократном повторении придают устойчивость молекулам белков с этой структурой.

Спираль вторичной структуры укладывается в клубок, образуя третичную структуру. Форма клубка у каждого вида белков строго специфична и полностью зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи. Третичная структура удерживается благодаря множеству слабых электростатических связей: положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, гидрофобные (водоотталкивающие) группы.

Некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре. Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой (рис. 2).

В структурах белковых молекул наблюдается следующая закономерность: чем выше структурный уровень, тем слабее поддерживающие их химические связи. Связи, образующие четвертичную, третичную, вторичную структуру, крайне чувствительны к физико-химическим условиям среды, температуре, радиации и т. д. Под их воздействием структуры молекул белков разрушаются до первичной - исходной структуры. Такое нарушение природной структуры белковых молекул называется денатурацией.При удалении денатурирующего агента многие белки способны самопроизвольно восстанавливать исходную структуру. Если же природный белок подвергается действию вьюокой температуры или интенсивному действию других факторов, то он необратимо денатурируется. Именно фактом наличия необратимой денатурации белков клеток объясняется невозможность жизни в условиях очень высокой температуры.

Биологическая роль белков в клетке

Белки, называемые также протеинами (греч. протос - первый}, в клетках животных и растений выполняют многообразные и очень важные функции, к которым можно отнести следующие.

Каталитическая. Природные катализаторы - ферменты представляют собой полностью или почти полностью белки. Благодаря ферментам химические процессы в живых тканях ускоряются в сотни тысяч или в миллионы раз. Под их действием все процессы идут мгновенно в «мягких» условиях: при нормальной температуре тела, в нейтральной для живой ткани среде. Быстродействие, точность и избирательность ферментов несопоставимы ни с одним из искусственных катализаторов. Например, одна молекула фермента за одну минуту осуществляет реакцию распада 5 млн. молекул пероксида водорода (Н202). Ферментам характерна избирательность. Так, жиры расщепляются специальным ферментом, который не действует на белки и полисахариды (крахмал, гликоген). В свою очередь, фермент, расщепляющий только крахмал или гликоген, не действует на жиры.

Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет биохимический конвейер.

Считают, что каталитическая функция белков зависит от их третичной структуры, при ее разрушении каталитическая активность фермента исчезает.

Защитная. Некоторые виды белков защищают клетку и в целом организм от попадания в них болезнетворных микроорганизмов и чужеродных тел. Такие белки носят название антител.Антитела связываются с чужеродными для организма белками бактерий и вирусов, что подавляет их размножение. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела. Такой механизм сопротивления возбудителям заболеваний называется иммунитетом.

Чтобы предупредить заболевание, людям и животным вводят ослабленные или убитые возбудители (вакцины), которые не вызывают болезнь, но заставляют специальные клетки организма производить антитела против этих возбудителей. Если через некоторое время болезнетворные вирусы и бактерии попадают в такой организм, они встречают прочный защитный барьер из антител.

Гормональная. Многие гормоны также представляют собой белки. Наряду с нервной системой гормоны управляют работой разных органов (и всего организма) через систему химических реакций.

Отражательная. Белки клетки осуществляют прием сигналов, идущих извне. При этом различные факторы среды (температурный, химический, механический и др.) вызывают изменения в структуре белков - обратимую денатурацию, которая, в свою очередь, способствует возникновению химических реакций, обеспечивающих ответ клетки на внешнее раздражение. Эта способность белков лежит в основе работы нервной системы, мозга.

Двигательная. Все виды движений клетки и организма: мерцание ресничек у простейших, сокращение мышц у высших животных и другие двигательные процессы - производятся особым видом белков.

Энергетическая. Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

Транспортная. Белок гемоглобин крови способен связывать кислород воздуха и транспортировать его по всему телу. Эта важнейшая функция свойственна и некоторым другим белкам.

Пластическая. Белки - основной строительный материал клеток (их мембран) и организмов (их кровеносных сосудов, нервов, пищеварительного тракта и др.). При этом белки обладают индивидуальной специфичностью, т. е. в организмах отдельных людей содержатся некоторые, характерные лишь для него, белки-

Таким образом, белки - эти важнейший компонент клетки, без которого невозможно проявление свойств жизни. Однако воспроизведение живого, явление наследственности, как мы увидим позже, связано с молекулярными структурами нуклеиновых кислот. Это открытие - результат новейших достижений биологии. Теперь известно, что живая клетка обязательно обладает двумя видами полимеров-белками и нуклеиновыми кислотами. В их взаимодействии заключены самые глубокие стороны явления жизни.



Тема:

Белки - природные биополимеры

“Меняя каждый миг свой образ прихотливый,
капризна, как дитя, и призрачна, как дым,

кипит повсюду жизнь в тревоге суетливой,
великое смешав с ничтожным и смешным…”

С.Я. Надсон

Методическая информация

Тип занятия

Интегрированный (биология + химия)

проблемно-исследовательский мультимедиа урок

Формировать у обучающихся представление о свойствах и функциях белков в клетке и организме

Обучающие:

дать понятие о белках - природных биополимерах, их многообразных функциях, химических свойствах белков;

формировать знания об уникальных особенностях строения белков;

углубить знания о взаимосвязи строения и функции веществ на примере белков;

учить обучающихся, использованию знаний смежных предметов для получения более полной картины мира.

Развивающие:

развитие познавательного интереса, установление межпредметных связей;

совершенствовать умения анализировать, сравнивать, устанавливать взаимосвязь между строением и свойствами.

Воспитательные:

показать материальное единство органического мира;

формирование научного мировоззрения;

Метод проблемного изложения, частично-поисковый, эвристический, исследовательский

Функция преподавателя:

Управляющий поисковой работой обучающихся, консультант

Знания, умения, навыки и компетенции, которые обучающиеся актуализируют, приобретут, закрепят в ходе занятия:

Формируются такие мыслительные операции, как: сравнение свойств белка, классификация структур белковой молекулы, сравнительный анализ функций белка.

Основные понятия: Аминокислоты, пептидная связь, полипептид, структура белка, функции белка, свойства белка, денатурация.

Основные навыки:

Работа с химическим оборудованием, работа по выявлению активности каталазы

Необходимое оборудование и материалы:

Компьютер, презентация по теме урока.

Эксперимент: пробирки, штативы, спиртовка, держатель.

Реактивы и материалы: р-р Белка куриного яйца, азотная кислота, р-р сульфата меди(II), щелочь, раствор 3% перекиси водорода, сырой и вареный картофель или мясо.

Ведущий тип деятельности:

Продуктивный, творческий, проблемный

Технологическая карта занятия

Мотивация:

Как изучение этой темы может вам помочь в вашей будущей профессии?

Ход занятия:

Организационный момент

“Белки, жиры и углеводы,
Пройдут века, эпохи годы,
К вам мы прикованы на век,
Без вас немыслим человек”

Актуализация знаний

А знаете ли Вы:
1.Белок никогда не переходит в жир - совет врача диетолога.
2. Образование морщин связано с уменьшением натурального белка коллагена и впрыскиванием его в верхний слой кожи коллаген возмещается. Почти все мелкие и крупные морщины можно корректировать этой терапией - совет врача косметолога.
3. Современное название белков- ферментов (энзимы).
4. Выработка иммунитета - это важная защитная функция белка. Диета снижает иммунитет.
5. Изучение белков позволило ответить на вопросы, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.
6.Все белки в организме человека постоянно разрушаются и синтезируются. Период полураспада белков в теле человека 80 дней, в мышцах, коже, мозгу ― 180 дней, в сыворотке крови и печени ― 10 дней, у ряда гормонов он исчисляется часами и даже минутами (инсулин).
7. Каждый вид обладает собственными видами белков. Если бы в белке не было бы заложено этого качества, то не было бы такого разнообразия жизненных форм, к которым относимся и мы.

8. Как появилась жизнь на Земле? Что лежит в основе жизни?

Вот сегодня мы об этом и будем вести речь.

План занятия:

Определение.

Функции белков.

Состав и строение белков.

Структура белков.

Химические свойства белков.

6. Превращение белков в организме.

Проблемный вопрос?

Как строение белка может быть связано с его свойствами и функциями?

Гипотеза:

Примеры белков

История открытия:

Состав белков

Определение

Понять, каким образом белки осуществляют перечисленные выше многообразные функции, непросто. Единственный способ приблизиться к решению этой задачи - узнать, из чего построен белок, как расположены структурные элементы, составляющие его молекулу, по отношению друг к другу и в пространстве, как они взаимодействуют друг с другом и веществами внешней среды, т.е. изучить строение и свойства белков.

Раскрыть причинно- следственную зависимость:

функции - строение.

белки - полимеры,

мономеры - аминокислоты

Назовите известные вам белки, укажите их местонахождение?
(кератин - рога, шерсть, коллаген - кожа, гемоглобин - кровь
фибрин, фибриноген - кровь, пепсин - желудочный сок,
трипсин - поджелудочный сок, миозин - мышцы,

глобулин - вакцина, родопсин - зрительный пурпур,
птиалин - слюна, инсулин - поджелудочная железа,
казеин -молоко, альбумин - яичный белок)

В середине 19 века положено начало изучения белков, но только через 100 лет учёные систематизировали белки, определи их состав, а также сделали вывод, что белки - это главный компонент живых организмов.

А.Я. Данилевский

- наличие в белке пептидной связи

Э.Фишер

- синтезировал соединения белка

Химический состав

белка может быть представлен следующими данными: С -55%, О - 24%, Н - 7,3%, N - 19%, S -2,4%.

На долю белков приходится более 50% общей массы органических соединений животной клетки: в мышцах - 80%, в коже - 63%, в печени - 57%, в мозге - 45%, в костях -28%

Химические формулы некоторых белков:

Пенициллин С16Н18О4N2

Казеин С1864Н3021О576N468 S2

Гемоглобин С3032Н4816 О872N780S8Fе4

- Давайте дадим определение термину БЕЛОК

БЕЛКИ

- биополимеры нерегулярного строения, мономерами которого являются 20 аминокислот разных типов. В химический состав аминокислот входят: С, О, Н, N, S. Белковые молекулы могут образовывать четыре простраственные структуры и выполняют в клетке и организме целый ряд функций: строительную, каталитическую, регуляторную, двигательную, транспортную

Функции белков

- Белки

- основа живого на Земле, входят в состав кожи, мышечной и нервной ткани, волос, сухожилий, стенок сосудов животных и человека; это строительный материал клетки. Роль белков трудно переоценить, т.о. жизнь на нашей планете действительно можно рассматривать как способ существования белковых тел, осуществляющих обменом веществ и энергией с внешней средой.

Поскольку белок содержит разнообразные функциональные группы, он не может быть отнесен к какому-нибудь из ранее изученных классов соединений. В нем как в фокусе сочетаются признаки соединений, относящихся к различным классам. Отсюда его многообразие. Это в сочетании с особенностями его структуры и характеризует белок как высшую форму развития вещества.

Структура белка

Составить конспект и ответить в процессе беседы на вопросы:

Остатки каких аминокислот входят в состав молекул белка? (см.прил.)

За счёт каких функциональных групп аминокислот происходит соединение их друг с другом?

Что понимают под «первичной» структурой белка?

Что представляет собой «вторичная» структура белка? Какие связи её удерживают?

Что такое «третичная» структура? За счет, каких связей она образуется?

В чем особенность четвертичной структуры?

(В виде линейной последовательности аминокислот)

-Что собой представляет первичная структура белка? Какие связи стабилизируют вторичную структуру? (Пространственная конфигурация белковой молекулы свернутые в виде спирали. В формировании спиральной конфигурации полипептидной цепи играют роль водородные связи между -С=О и -N-H группами..)

- Что собой представляет третичная структура белка? то конфигурация в виде закрученной вспираль полипептидной цепи. Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, между атомами серы образуется дисульфидный мостик, между карбоксильной и гидроксильной группами имеется сложноэфирный мостик, а между карбоксильной и аминогруппами может возникнуть солевой мостик. Для этой структуры характерны и водородные связи).

- Что собой представляет четвертичная структура белка? (Некоторые белковые макромолекулы могут соединяться друг с другом и образовывать относительно крупные агрегаты- макромолекулы белка).

Какие химические свойства будут характерны для белков? (Амфотерность связана с наличием в молекуле белка катионообразующих групп - аминогрупп и анионообразующих - карбоксильных группу. Знак заряда молекулы зависит от количества свободных групп. Если преобладают карбоксильные группы, то заряд молекулы - отрицательный (проявляются свойства слабой кислоты), еслиаминогруппы - то положительный (основные свойства)).

Название структуры

Что собой представляет

Какими связями поддерживается

1. первичная

линейная цепь

пептидные

2. вторичная

полипептидная цепь в виде спирали

водородные связи

3. третичная

трехмерная конфигурация из закрученной спирали

дисульфидные мостики, сложноэфирные связи, водородные связи, амидные связи

4. четвертичная

объединение нескольких трёхмерных структур в одно целое

взаимодействие отдельных полипептидных цепей

Химические свойства белков

Для белков характерны реакции, в результате которых выпадает осадок. Но в одних случаях полученный осадок при избытке воды растворяется, а в других - происходит необратимое свертывание белков, т.е. денатурация.

Происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы под влиянием внешних факторов: температура, действия химических реагентов, механического воздействия.

При денатурации изменяются физические свойства белка, снижается растворимость, теряется биологическая активность

К чему может привести денатурация?

Нарушение антигенной чувствительности белка;

Блокирование ряда иммунологических реакций;

Нарушение обмена веществ;

Воспаление слизистой оболочки ряда органов пищеварения (гастриты, колит);

Камнеобразование (камни имеют белковую основу).

Также для белков характерны:

Свертывание белков при нагревании

Осаждение белков солями тяжелых металлов и спиртом

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Белки подвергаются гниению (под действием гнилостных бактерий), при этом образуются метан (CH4), сероводород (H2S), аммиак (NH3), вода и другие низкомолекулярные продукты.

Амфотерность

Строение АК в общем виде:

NH2-CH- COOH, где R - углеводородный радикал.

СООН - карбоксильная группа / кислотные свойства/.

NН2 - аминогруппа / основные свойства/.

Процесс восстановления структуры белка называется ренатурацией

Превращения белков в организме.

Белки пищи → полипептиды → α-аминокислоты → белки организма

Как ведет себя белок по отношению к воде?

Гидролиз

Гидролиз белка

- разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию α- аминокислот, из которых он был составлен.

Белки - Альбумозы - Дипептиды - Аминокислоты

Качественные, цветные реакции на белок

Ксантопротеиновая реакция - реакция на ароматические циклы.

Белок + HNO3(к) → белый осадок → желтая окраска → оранжевая окраска + NH3

Как с помощью ксантопротеиновой реакции можно отличить натуральные шерстяные нитки от искусственных?

Биуретовая реакция

- реакция на пептидные связи.

Белок + Cu(OH)2 → фиолетовая окраска раствора

Можно ли с помощью химии решить проблему дефицита белковой пищи?

Должна медленно появиться розово-фиолетовая или пурпурная окраска. Это реакция на пептидные связи в соединениях. В присутствии разбавленного раствора Си в щелочной среде атомы азота пептидной цепи образуют окрашенный в пурпурный цвет комплекс с ионами меди (II). Биурет (производное мочевины) тоже содержит группу CONH - и поэтому дает эту реакцию.

Функции белка

Эвристическая

картинка

Харак-теристика

Пример

Функция

Белки мембран

протеиды

Освободившаяся энергия используется на поддержание процессов жизнедеятельности организма.

тическая

управляют активностью ферментов.

Удлинение и укорочение мышц

Выработка специальных защитных белков - антител.

Механизм сопротивления возбудителям заболеваний называют иммунитетом.

Антитела- иммуно

глобулины

Защитная

Расщепление и окисление поступающих извне питательных веществ и прочее.

тическая

Домашняя работа

Один стакан цельного молока содержит 288 мг кальция. Сколько нужно выпивать в день молока для снабжения вашего организма достаточным количеством этого элемента? Суточная потребность 800 мг Са.

(Ответ. Для удовлетворения суточной потребности в кальции взрослый мужчина должен выпивать в день 2,7 стакана молока: 800 мг Са*(1 стакан молока/ 288 Са) = 2,7 стакана молока).

В куске белого пшеничного хлеба 0,8 мг железа. Сколько кусков нужно съедать в день для удовлетворения суточной потребности в этом элементе. (Суточная потребность в железе 18 мг). (Ответ. 22,5 кусочка)

18 мг.: 0,8= 22,5

Закрепление изученного материала

Игра «Подними руку, если согласен»

Сейчас вы будете выполнять задание по изученной теме в виде теста.

(Во время проверки обучающиеся меняются своими работами и оценивают работу соседа. Варианты правильных ответов на доске. По окончании проверки каждый выставляет оценку соседу)

- Какая структура является самой прочной? Почему?
Ответ: Первичная, т.к. связи прочные, ковалентные.
Именно при помощи радикалов реализуется одно из выдающихся свойств белков - их необыкновенная многогранная химическая активность. (причинно- следственные связи: функции - строение- конфигурация - свойства).

-Как можно с помощью проволоки, бус показать образование вторичной, третичной, четвертичной структур белка. За счет каких связей, взаимодействий это происходит?

А теперь с помощью теста проверим, как вы усвоили материал.

На ответ «Да» поднимаете руку.

1. В состав белков входят аминокислоты, прочно связанные между собой водородными связями (Нет)

2. Пептидной называют связь между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты. (Да)

3. Белки составляют основную часть органических веществ клетки. (Да)

4.Белок - мономер. (Нет)

5. Продукт гидролиза пептидных связей - вода. (Нет)

6. Продукты гидролиза пептидных связей - аминокислоты. (Да)

7. Белок - макромолекула. (Да)

8. Катализаторы клетки - это белки. (Да)

9. Существуют белки, переносящие кислород и углекислый газ. (Да)

10. Иммунитет не связан с белками. (Нет)

Высказывания о жизни и белках знаменитых людей

«Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом».

Ф.Энгельс «Анти-Дюринг»

Знаменитый путешественник и естествоиспытатель Александр Гумбольдт еще на пороге 19 века давал такое определение жизни:

«Жизнь есть способ существования белковых тел, существенным моментом которого является постепенный обмен веществ с окружающей их внешней природой; причем с прекращением этого обмена веществ прекращается и сама жизнь, что приводит к разложению белка».

Определение, данное Ф.Энгельсом в работе«Анти-Дюринг», позволяет задуматься над тем, как современная наука представляет процесс жизни.

«Жизнь - это переплетение сложнейших химических процессов взаимодействия белков между собой и другими веществами».

Приложение № 1

Функции белков.

Каталитическая функция

Белок как фермент:

Ферменты - белки, обладающие каталитической активностью, т.е. ускоряющие протекание реакций. Все ферменты катализируют только одну реакцию. Заболевания, вызываемые ферментной недостаточностью.

Пример: неперевариваемость молока (нет фермента лактазы); гиповитаминозы (витаминная недостаточность)

Определение активности ферментов в биологических жидкостях имеет большое значение для диагностики заболевания. Например, по активности ферментов в плазме крови определяют вирусный гепатит.

Ферменты используют как реактивы при диагностике некоторых заболеваний.

Ферменты используют для лечения некоторых болезней. Примеры: панкреатин, фестал, лидаза.

Ферменты используются в промышленности: при приготовлении безалкогольных напитков, сыров, консервов, колбас, копченостей.

Ферменты используются при обработке льна, конопли, для смягчения кожи в кожевенной промышленности, они входят в состав стиральных порошков.

Структурная функция

Белки являются структурным компонентом многих клеток. Например, мономеры актина итубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму.Коллаген и эластин — основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти,перья птиц и некоторые раковины.

Защитная функция

Существуют несколько видов защитных функций белков:

Физическая защита. В ней принимает участие коллаген — белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоёв кожи (дермы)); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса.

Химическая защита. Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играютферментыпечени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атакупатогенов

Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируюттранскрипцию, трансляцию, а также активность других белков и др.

Регуляторную функцию белки осуществляют либо за счёт ферментативной активности), либо за счёт специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Сигнальная функция

Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.

Транспортная функция

Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Запасная (резервная) функция белков

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессыметаболизма.

Рецепторная функция

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях — свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы — белок-рецептор — происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты.

Моторная (двигательная) функция

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт создайте презентацию

Коды пищевых добавок

Е103, Е105, Е111, Е121, Е123,Е125,Е126, Е130, Е152.

2. Подозрительные

Е104, ЕЕ122, Е141, Е150, Е171, Е173, Е180, Е241, Е477.

3. Опасные

Е102, Е110, Е120, Е124,. Е127.

4.Канцерогенные

Е131,Е210-Е217,Е240, Е330.

5. Вызывающие расстройства кишечника

6. Вредные для кожи

7. Вызывающие нарушение давления

8. Провоцирующие появление сыпи

9. Повышающие уровень холестерина

10. Вызывающие расстройство желудка

Е338 Е341, Е407, Е450, Е461 - Е466

Практическая работа

Тема:

«Химические свойства белков. Качественные (цветные) реакции на белки».

Цель: Изучить химические свойства белков. Познакомиться с качественными реакциями на белки. Активность фермента каталазы в живых и мертвых тканях..

«Денатурация белков»

Порядок выполнения.

Приготовьте раствор белка.

В пробирку налейте 4-5 мл раствора белка и нагрейте до кипения.

Отметьте изменения.

Охладите содержимое пробирки и разбавьте водой.

«Ксантопротеиновая реакция»

Порядок выполнения.

2. В пробирку прилейте 1 мл уксусной кислоты.

3. Содержимое пробирки нагрейте.

4. Охладите смесь и добавьте аммиак до щелочной среды.

5. Отметьте изменения.

«Биуретовая реакция»

Порядок выполнения.

1. В пробирку налейте 2-3 мл раствора белка.

2. Добавьте 2-3 мл раствора гидроксида натрия и 1-2 мл раствора медного купороса..

3. Отметьте изменения.

Качественные (цветные)

реакции на белки. Опыты №2 и №3

Ксантопротеиновая реакция

Белок + HNO3конц > ярко?желтое окрашивание

(обнаружение бензольных ядер)

Биуретовая реакция

Белок + NaOH+CuSO4 > красно-

фиолетовое окрашивание

(обнаружение пептидных связей)

«Доказательство наличие белка только в живых организмах»

Порядок выполнения.

1. В пробирках находятся свежевыжатый сок картофеля, кусочки сырого картофеля,

вареный картофель.

2. Добавьте в каждую пробирку 2-3 мл перекиси водорода.

3. Отметьте изменения. (каталаза - ферментный белок выделяется только в

присутствии молекулярной воды, растворенные в воде альбумины сворачиваются)

Опыт

Что делали

Что наблюдали

Объяснение и выводы

1. Качественные реакции на белки.

а) Биуретовая реакция.

К 2 мл раствора белка добавить раствор сульфата меди (II) и щелочи.

Красно-фиолетовое окрашивание.

При взаимодействии растворов образуется комплексное соединение между ионами Си2+ и полипептидами.

б) Ксантопротеиновая реакция.

К 2 мл раствора белка добавить по каплям концентрирующуюся азотную кислоту.

Желтое окрашивание.

Реакция доказывает, что в состав белков входят остатки ароматических аминокислот.

2. Денатурация белка.

Пробирку № 3 с раствором белка нагреть.

Во всех трех случаях наблюдается необратимое свертывание белка — денатурация.

При нагревании, действии неразбавленного спирта, солей тяжелых металлов происходит разрушение вторичной и третичной структуры, с сохранением первичной.

«Жизнь есть способ существования белковых тел…» Ф.Энгельс

Опорный конспектПриложение № 2

- АМФОТЕРНОСТЬ

Кислая среда = по типу щелочи

[белок]+ + ОН- = по типу кислоты

- ГИДРОЛИЗ ……разрушение первичной структуры белка до α-аминлкислот

Качественные реакции

-БИУРЕТОВАЯ РЕАКЦИЯ (распознавание в молекуле белка пептидных связей).

Б. + CuSO4 + NaOH → фиолетовое окрашивание

………………………………

- КСАНТОПРОТЕИНОВАЯ РЕАКЦИЯ(обнаружение бензольных ядер).

Б. + HNO3 → желтое окрашивание

- ГОРЕНИЕ БЕЛКА ………………………..

N2, CO2, H2O - запах жженых перьев

- ДЕНАТУРАЦИЯ - ………………………..

высокая t разрушение

радиоактивное облучение 2-3 структуры

соли тяжелых Ме

Протеины Протеиды

БЕЛКИ

- важнейшая составная часть живых организмов, входят в состав кожи, роговых покровов, мышечной и нервной ткани

(простые) (сложные)

1 вариант

2 вариант

1. В состав аминокислот входят:

а) только аминогруппы

б) только карбоксильные группы

в) аминогруппы и карбоксильные группы

г) аминогруппы и карбонильные группы

1. Аминокислотой является вещество, формула которого:

а) СН3СН2 СОNН2

б) NН2СООН

в) NН2СН2СН2СООН

г) NН2СН2СОН

2. Аминокислоты, которые не могут синтезироваться в организме человека, а поступают только с пищей, называются

а) a -аминокислотами

б) пищевыми

в) -аминокислотами

г) незаменимыми

2. Аминокислоты - это

а) бесцветные легкокипящие жидкости

б) газы тяжелее воздуха

в) кристаллические вещества розового цвета

г) бесцветные кристаллические вещества

3. При взаимодействии аминокислот со щелочами и кислотами образуются:

б) сложные эфиры

в) дипептиды

г) полипептиды

3. Образование полипептидов происходит по типу реакции:

а) полимеризации

б) поликонденсации

в) присоединения

г) замещения

4. Формула 3-аминопропановой кислоты:

а) NН2СН2СООН

б) NН2СН2СН2СООН

в) NН2СН2СН2 NН2

г) NН2СН СН2СООН
СН3

4. Самые слабые кислотные свойства проявляет кислота:

а) уксусная

б) хлоруксусная

в) аминоуксусная

г) дихлоруксусная

5. Верным является утверждение, что аминокислоты это:

а) твердые вещества молекулярного строения

б) кристаллические вещества ионного строения

в) жидкости, хорошо растворимые в воде

г) кристаллические вещества с низкими температурами плавления

5. Аминокислоты являются амфотерными соединениями,

так как они взаимодействуют:

а) с кислотами

б) с щелочами

в) со спиртами

г) с кислотами и щелочами

Ответы

1 - В, 2 - Г, 3 - А, 4 - Б, 5 - БОтветы1 - В, 2 - Г, 3 -Б, 4 -В, 5 - Г

1 вариант

2 вариант

1. Укажите название белка, выполняющего защитную функцию:

1. Укажите название белка, выполняющего ферментативную функцию:

а) гемоглобин, б) оксидаза, в) антитела.

2. Белки - это..:

а) полисахариды, б) полипептиды,

в) полинуклеотиды.

2. Биологические свойства белка определяет структура:

а) третичная, б) вторичная, в) первичная.

3. Первичная структура белка поддерживается за счёт связей:

3. Вторичная структура белка поддерживается за счёт связей:

а) ионных, б) пептидных, в) водородных.

4. Гидролиз белка используется для:

а) получения аминокислот,

б) качественного обнаружения белка,

в) разрушения третичной структуры

4. Белки подвергаются реакциям:

а) денатурации, б) полимеризации,

в) поликонденсации.

5. Аминокислоты, необходимые для построения белков, попадают в организм:

а) с водой, б) с пищей, в) с воздухом.

5. Какой из процессов наиболее сложен:

а) микробиологический синтез, б) органический синтез, в) переработка растительного белка.

Ответы: 1 - в, 2 - б, 3 - б, 4 - а, 5 - б. Ответ: 1 - б, 2 - в, 3 - в. 4 - а, 5 - б.

Тест «Белки»

1. Какие химические элементы входят в состав белков?

а) углерод б) водород в) кислород г) сера д) фосфор е) азот ё) железо ж) хлор

2. Сколько аминокислот участвуют в образовании белков?

а) 30 в) 20 б) 26 г) 10

3. Сколько аминокислот являются незаменимыми для человека?

а) 16 б) 10 в) 20 г) 7

4. В результате какой реакции образуется пептидная связь?

а) реакция гидролиза в) реакция поликонденсации

б) реакция гидратации г) все вышеперечисленные реакции

5. Какая функциональная группа придает аминокислоте - кислотные, какая - щелочные свойства? (карбоксильная, аминогруппа).

6. Какие связи образуют 1- первичную, 2- вторичную, 3- третичную структуры белка? Соотнесите:

а) ковалентные в) ионные

б) водородные г) такие связи отсутствуют

7) Определите структуры белковой молекулы:

1. 2.


Таблица ответов

Номер вопроса

Вариант ответа

8) Денатурация - это разрушение белка до _____________структуры под действием________________, а также под действием растворов различных химических веществ (______,________, солей) и радиации.

9) Гидролиз - это разрушение _____________структуры белка под действием________________, а так же водных растворов кислот или щелочей.

10) Качественные реакции:

а) Биуретовая.
Белок + ___________________________ = _________________________
б) Ксантопротеиновая.
Белок + ___________________________ = __________________________

11) Установите соответствие между белками и их функцией в организме. Ответ дайте в виде последовательности цифр, соответствующих буквам по алфавиту:

БЕЛКИ: ФУНКЦИЯ:

А) гемоглобин 1)сигнальная

Б) ферменты 2) транспортная

В) антитела и антитоксины 3) структурная

4) каталитическая

5) защитная

12) Заполните значение белков:

Функции

Значение

Строительная

Клеточные мембраны, покровные ткани, шерсть, перья, гора, волосы, хрящи

Транспортная

Накопление и транспорт по организму важнейших веществ

Энергетическая

Запас аминокислот для развития организма

Двигательная

Сократительные белки основа мышечных тканей

Защитная

Белки - антитела, антитоксины распознают и уничтожают бактерии и “чужеродные” вещества

Каталитическая

Белки - природные катализаторы (ферменты)

Сигнальная

Мембранные белки воспринимают внешние воздействия и передают сигнал о них внутрь клетки

Вопросы к брифингу:

Белок иначе называют…

Что является мономерами белка?

Сколько незаменимых АК известно?

Каков атомарный состав белков?

Какая связь поддерживает вторичную структуру?

Как называется связь, образующая ППЦ?

Вторичная структура белковой молекулы в пространстве напоминает…

За счет каких взаимодействий образуются третичная структура?

Почему белки относят к ВМС?

Что в переводе с греческого означает “протеин”?

Что такое “денатурация”?

Как называется процесс взаимодействия белков с Н2О?

Согласно новой рецензии, опубликованной на сайте Applied Physiology, Nutrition and Metabolism , важно не только количество потребляемого белка, но и его источник. Есть целых три причины заботиться об этом.

Прежде всего, любой источник белка, будь то курица или арахис, содержит разное количество аминокислот - строительного материала для белков. Из 20 возможных аминокислот девять просто необходимы организму. Эти аминокислоты вы можете получить только из пищи. Так что очень важно правильно , включив в него разные продукты, богатые белком.

Продукты животного происхождения (мясо, яйца, молочные продукты) включают все необходимые аминокислоты в том или ином количестве, но большинство продуктов растительного происхождения содержат только фракции девяти необходимых аминокислот.

«Это значит, что если вы решили получать белок только из орехов, то организм будет лишён важных аминокислот», - объясняет соавтор исследования Райавель Иланго (Rajavel Elango), специалист по питанию и метаболизму.

Когда вы получаете белок из продуктов растительного происхождения, важно правильно подобрать их разновидности и количество, чтобы получить полную дневную норму необходимых аминокислот.

Конечно, это не повод отказываться от своих пищевых предпочтений и получать белки только из , поедая их на завтрак, обед и ужин. Такой рацион, помимо белка, включает большое количество калорий, жира и холестерина, что негативно сказывается на вашей фигуре и здоровье в целом. И это вторая причина следить за тем, какие продукты вы выбираете для насыщения организма белком.

И, наконец, третья причина - самая важная. «Каждый продукт, который служит для вас источником белка, включает определённое количество витаминов и минералов, - утверждает Иланго. - Некоторые продукты богаты витамином B, другие - железом, в третьих вообще практически нет полезных веществ».

Ваш организм не сможет усвоить полученный белок с максимальной пользой при недостатке важных питательных веществ.

Хотите убедиться в том, что получаете белок из правильных продуктов? Вот несколько самых полезных источников белка.

Яйца

liz west/Flickr.com

«Мало того, что в каждом яйце содержится по 6 г белка, это ещё и наиболее полезный белок», - утверждает Бонни Тауб-Дикс (Bonnie Taub-Dix), американский диетолог, блогер и автор книги «Прочитайте, прежде чем съесть».

Белок, получаемый из яиц, имеет самую высокую усвояемость и помогает формировать ткани организма. Кроме того, яйца богаты холином и витаминами B 12 и D - веществами, важными для поддержания общего уровня энергии и её запаса в клетках организма.

Несмотря на распространённое мнение о том, что холестерин из яиц негативно влияет на работу сердца, вследствие чего можно употреблять этот продукт не чаще 2–3 раз в неделю, учёные доказали обратное. По результатам исследования, опубликованного в British Medical Journal, было установлено, что одно яйцо в день не влияет на работу сердца и не увеличивает риск инсульта.

Творог

«В одной порции творога (150 г) содержится около 25 г белка и 18% дневной нормы кальция», - говорит диетолог Джим Уайт (Jim White). Кроме того, творог богат казеином, медленно усваиваемым белком, который блокирует чувство голода на несколько часов.

Курица


James/Flickr.com

Птица должна быть основой белковой диеты. Она содержит меньше насыщенных жиров, чем большинство других видов мяса, и около 40 г белка в одной грудке (20 г белка на 100 г мяса). Иланго советует делать выбор в пользу белого мяса так часто, как можете, чтобы потреблять меньше калорий.

Цельное зерно

Цельнозерновые продукты полезны для здоровья и включают в себя гораздо больше белка, чем продукты из обычной муки. Например, хлеб из пшеничной муки первого сорта содержит 7 г белка, а цельнозерновой хлеб - 9 г белка на 100 г продукта.

Что более важно, цельнозерновые продукты обеспечивают организм клетчаткой, полезны для сердца и помогают контролировать вес.

Рыба


James Bowe/Flickr.com

«Рыба с низким содержанием калорий и множеством питательных веществ - это отличный источник жирных кислот омега-3, которые обеспечивают здоровье сердца и стабилизируют настроение», - утверждает Тауб-Дикс.

Среди самых полезных рыб - лосось и тунец. В одной порции лосося содержится около 20 г белка и 6,5 г ненасыщенных жирных кислот. А тунец - это настоящий кладезь белка: 25 г на 100 г продукта.

Если вы хотите избавиться от лишнего жира в организме, также стоит включить в свой рацион блюда из лосося: он содержит только 10–12 г жиров, насыщенных и ненасыщенных. Диетологи советуют есть рыбу дважды в неделю в запечённом или жареном виде.

Бобовые


cookbookman17/Flickr.com

Греческий (фильтрованный) йогурт

Греческий йогурт может послужить завтраком, лёгкой закуской или ингредиентом для разных блюд. По сравнению с обычным йогуртом, в греческом почти в два раза больше белка: вместо 5–10 г в одной порции йогурта - 13–20 г. Кроме того, в греческом йогурте довольно много кальция: 20% от дневной нормы.

Орехи


Adam Wyles/Flickr.com

Орехи известны как продукт, богатый полезными ненасыщенными жирными кислотами, однако в них также содержится много белка. Кроме того, как показало исследование, опубликованное в 2013 году в New England Journal of Medicine, люди, съедающие горсть орехов в день, на 20% меньше подвержены риску смерти от разных недугов.

Зелень


Jason Bachman/Flickr.com

Разные виды зелени и зелёных листовых овощей богаты белком. Например, в 100 г шпината содержится всего 22 ккал и около 3 г белка, а в петрушке - 47 ккал и 3,7 г белка. Несмотря на то что в зелени недостаточно необходимых аминокислот, вы можете комбинировать её с бобовыми и получать достаточно белка и полезных веществ.

А какие продукты, богатые белком, предпочитаете вы?

Формирование новых знаний. Лекционный блок.

План изучения темы:

1.Роль белков в организме, природные источники белков.

2.Состав и строение белков.

3.Функции белков.

4.Физические и химические свойства белков.

5.Синтез белков.

6.Превращения белков в организме

Из органических веществ, входящих в живую клетку, важнейшую роль играют белки. На их долю приходится около 50% массы клетки. Благодаря белкам организм приобрел возможность двигаться, размножаться, расти, усваивать пищу, реагировать на внешние воздействия и т. д.

«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка», – писал Энгельс в своих трудах.

Белки – необходимые компоненты пищевых продуктов, они входят в состав лекарственных препаратов.

Белок – важный компонент пищи человека. Основные источники пищевого белка: мясо, молоко, продукты переработки зерна, хлеб, рыба, овощи. Потребность в белке зависит от возраста, пола, вида деятельности. В организме здорового человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие белкового баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т.е. количество азота, полученного с белками пищи равно количеству выделяемого азота. В молодом, растущем организме идет накопление белковой массы, поэтому азотный баланс будет положительный, т.е. количество поступающего азота превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях наблюдается отрицательный азотный баланс. Длительный отрицательный азотный баланс ведет к гибели организма.

Необходимо помнить, что некоторые аминокислоты при тепловой обработке, длительном хранении продуктов могут образовывать неусвояемые организмом соединения, т.е. становиться “недоступными”. Это снижает ценность белка.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы – на 93–95%, то белки хлеба – на 62–86%, овощей – на 80%, картофеля и некоторых бобовых – на 70%. Однако смесь этих продуктов может быть биологически более полноценной.

На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает. При интенсивной тепловой обработке усвояемость снижается.


Суточная потребность взрослого человека в белке разного вида 1–1,5 г на 1 кг массы тела, т.е. приблизительно 85–100 г. Доля животных белков должна составлять приблизительно 55% от общего его количества в рационе.

2. Строение белков

.

Многие органические соединения, входящие в состав клетки, характеризуются большими размерами молекул. Как называются такие молекулы? (макромолекулы) Они состоят обычно из повторяющихся сходных по строению низкомолекулярных соединений, связанных между собой ковалентными связями. Их строение можно сравнить с бусинками на нити. Как называются эти составные элементы? (Мономеры). Они образуют полимеры. Большинство полимеров построено из одинаковых мономеров. Такие мономеры называются регулярными. Например, если А – мономер, то –А-А-А-…….А- полимер. Полимеры, в которых мономеры различны по строению, называются нерегулярными. Например, -А-В-Р-П-А-……Г-Р-П-А-. Состав определяет их свойства.

Белки – нерегулярные полимеры, мономерами которых являются аминокислоты.

Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100000 белков.

В состав большинства белков входят 300–500 аминокислотных остатков, но есть и более крупные белки, состоящие из 1500 и более аминокислот. Белки различаются и составом аминокислот и числом аминокислотных звеньев, и особенно порядком чередования их в полипептидных цепях. Расчет показывает, что для белка, построенного из 20 различных аминокислот, содержащего в цепи 100 аминокислотных остатков, число возможных вариантов может составить 10130. Многие белки велики и по длине, и по молекулярной массе.

Инсулин –5700

Рибонуклеаза –12700

Альбумин-36000

Гемоглобин-65000

Белки должны быть при такой массе длинными нитями. Но их макромолекулы имеют формулу компактных шаров (глобул) или вытянутых структур (фибрилл).

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки). Число аминокислотных остатков, входящих в молекулы, различно, например: инсулин – 51, миоглобин – 140. Отсюда Mr белка от 10 000 до нескольких миллионов.

Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. Немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. Русским ученым А.Я.Данилевским. Эта теория получила подтверждение в последующих работах. Согласно полипептидной теории белки имеют определенную структуру

Многие белки состоят из нескольких полипептидных частиц, которые складываются в единый агрегат. Так, молекула гемоглобина (С738Н1166S2Fe4O208) состоит из четырех субъединиц. Отметим, что Mr белка яйца = 36 000, Mr белка мышц = 1 500 000.

Первичная структура белка – последовательность чередования аминокислотных остатков, осуществляется за счет пептидных (амидных) связей, все связи ковалентные, прочные.

Вторичная структура

– форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль, осуществляется за счет множества водородных связей.

Третичная структура

– реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль Третичная структура – клубок из полипептидной спирали. (Демонстрация клубка из эластичного шнура).

Представить конфигурацию легко, труднее понять, какие силы ее поддерживают. (Водородные связи, дисульфидные мостики –S-S-, сложноэфирная связь между радикалами. Полярные группы COOH и OH взаимодействуют с водой, а неполярные радикалы отталкивают ее, они направлены внутрь глобул. Радикалы взаимодействуют между собой благодаря силам Ван-дер-Ваальса.) (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные мостики), сложноэфирные мостики..

Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс. Четвертичная структура – структура из нескольких полипептидных цепей

Похожие публикации

ДАЛЬШЕ